Tính rồi so sánh A và B biết rằng:
A. A > B
B. A < B
C. A = B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Điền số thích hợp vào ô trống:
Một cửa hàng có gạo. Cửa hàng bán đi số gạo đó sau đó nhập thêm số gạo gấp 4 lần số gạo còn lại. Vậy số gạo của cửa hàng sau khi nhập là ki-lô-gam gạo.
Một người đi xe đạp đi được trong giờ đầu tiên. Giờ thứ hai người đó đi được . Vậy người đó còn phải đi bao nhiêu ki-lô-mét nữa thì mới đến nơi, biết quãng đường đó dài 30km.
1. Phép cộng và phép trừ hỗn số
* Để thực hiện phép cộng và phép trừ hỗn số, ta có hai cách làm sau:
Cách 1: Chuyển hỗn số về phân số
+ Muốn cộng (hoặc trừ) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi cộng (hoặc) trừ hai phân số vừa chuyển đổi.
Ví dụ: Thực hiện phép tính:
a)
b)
Lời giải:
a)
b)
Cách 2: Tách hỗn số thành phần nguyên và phần phân số, sau đó thực hiện phép cộng (trừ) phần nguyên và phép cộng (trừ) phần phân số.
Ví dụ: Thực hiện phép tính:
a)
b)
Lời giải:
a)
b)
2. Phép nhân và phép chia hỗn số
+ Để thực hiện nhân (hoặc chia) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi nhân (hoặc chia) hai phân số vừa chuyển đổi.
Ví dụ: Thực hiện phép tính:
a)
b)
Lời giải:
a)
b)
3. So sánh hỗn số
* Để thực hiện so sánh hỗn số, ta có hai cách dưới đây:
Cách 1: Chuyển hỗn số về phân số: để so sánh hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi so sánh hai phân số vừa chuyển đổi.
Ví dụ: So sánh hai hỗn số: và
Lời giải:
Ta có: và
Quy đồng mẫu số hai phân số, ta có:
Vì nên
Cách 2: So sánh phần nguyên và phần phân số. Khi so sánh hai hỗn số:
- Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn và ngược lại hỗn số nào có phần nguyên nhỏ hơn thì hỗn số đó nhỏ hơn
- Nếu hai phần nguyên bằng nhau thì ta so sánh phần phân số, hỗn số nào có phần phân số lớn hơn thì hỗn số đó lớn hơn.
Ví dụ: So sánh các hỗn số sau:
a) và
b) và
Lời giải:
a) và
Hỗn số có phần nguyên bằng 2 và hỗn số có phần nguyên bằng 3
Vì 2 < 3 nên .
b) và
Hai hỗn số có cùng phần nguyên nên ta so sánh phần phân số của hai hỗn số
Vì nên