Cho tam giác ABC có \(\widehat A = 80^\circ \) và \(\widehat B = 60^\circ .\) Chọn khẳng định đúng:
Hướng dẫn giải
Đáp án đúng là: D
Ta có: BC là cạnh đối diện của \(\widehat {\rm{A}}\) (1)
AC là cạnh đối diện của \(\widehat {\rm{B}}\) (2)
Vì 80° > 60° nên \(\widehat {\rm{A}} > \widehat {\rm{B}}\) (3)
Từ (1); (2) và (3) suy ra BC > AC (quan hệ giữa cạnh và góc trong tam giác).
Vậy ta chọn phương án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có AB = 5 cm, BC = 9 cm và CA = 13 cm. Sắp xếp các góc của ∆ABC theo thứ tự giảm dần, ta có khẳng định đúng là
Cho tam giác DEF có \(\widehat D = 38^\circ \) và \(\widehat E = 110^\circ .\) Độ dài các cạnh của ∆DEF sắp xếp theo thứ tự tăng dần là
Cho ∆ABC cân tại A có BC = 9 cm; chu vi ∆ABC bằng 25 cm. Chọn khẳng định sai:
Cho tam giác ABC có AH, BK, CL lần lượt là ba đường cao của tam giác ABC. Chọn khẳng định đúng: