Cho tam giác DEG có \(\widehat G = \frac{1}{3}\widehat D = \frac{1}{5}\widehat E\). Vẽ các đường phân giác DM, EN. Số đo góc GMD là:
Hướng dẫn giải
Đáp án đúng là: C
Xét DDEG có \(\widehat {DEG} + \widehat {DGE} + \widehat {E{\rm{DG}}} = 180^\circ \) (tổng ba góc trong một tam giác)
Mà \(\widehat {DGE} = \frac{1}{3}\widehat {EDG} = \frac{1}{5}\widehat {DEG}\) nên \(\widehat {DEG} = 5\widehat {DGE};\widehat {EDG} = 3\widehat {DGE}\)
Suy ra \(5.\widehat {DGE} + \widehat {DGE} + 3.\widehat {DGE} = 180^\circ \)
Hay \(9.\widehat {DGE} = 180^\circ \)
Do đó \(\widehat {DGE} = 180^\circ :9 = 20^\circ \).
Khi đó \(\widehat {EDG} = 3.20^\circ = 60^\circ \).
Vì DM là đường phân giác của góc EDG
Nên \(\widehat {G{\rm{DM}}} = \widehat {MDE} = \frac{1}{2}\widehat {G{\rm{D}}E} = \frac{1}{2}.60^\circ = 30^\circ \).
Xét DDMG có \(\widehat {DMG} + \widehat {DGM} + \widehat {GDM} = 180^\circ \) (tổng ba góc trong một tam giác)
Mà \(\widehat {DGM} = 20^\circ \), \(\widehat {G{\rm{DM}}} = 30^\circ \)
Suy ra \(\widehat {DMG} = 180^\circ - 20^\circ - 30^\circ = 130^\circ \).
Vậy ta chọn phương án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có các tia phân giác cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB lại E, cắt AC tại F. Biết BE = 1 cm, CF = 2 cm. Độ dài đoạn EF là:
Cho tam giác DEG có \(\widehat G = \widehat D + \widehat E\). Hai tia phân giác DA, EB cắt nhau tại H. Số đo góc AHB là:
Cho ΔABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khẳng định nào đúng?
Cho tam giác ABC có AH ⊥ BC và \(\widehat {BAH} = 2\widehat {BCA}\). Tia phân giác của góc B cắt AC tại E, tia phân giác của góc BAH cắt BE ở I. Số đo góc BEC là
Cho tam giác AOM có \(\widehat A = 52^\circ \). Ba đường phân giác cắt nhau tại I. Số đo góc MIO là:
Cho tam giác ABC có các đường phân giác cắt nhau tại I. Biết \(\widehat {BIC} = 126^\circ .\) Khi đó \(\widehat {BAI}\) bằng: