Trong trò chơi gieo xúc xắc, số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là 6. Nếu k là số các kết quả thuận lợi cho biến cố thì xác xuất của biến cố là:
A. \(\frac{k}{6}\);
B. \(\frac{{2k}}{6}\);
C. \(\frac{{3k}}{6}\);
D. \(\frac{{4k}}{6}\).
Đáp án đúng là: A
Nếu k là số các kết quả thuận lợi cho biến cố thì xác xuất của biến cố là \(\frac{k}{6}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gieo ngẫu nhiên xúc xắc một lần. Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 2”. Xác suất của biến cố này là:
Trước trận chung kết bóng đá World Cup năm 2010 giữa hai đội Hà Lan và Tây Ban Nha, để dự đoán kết quả người ta bỏ cùng loại thức ăn vào hai hộp giống nhau, một hộp có gắn cờ Hà Lan, một hộp gần cờ Tây Ban Nha và cho Paul chọn hộp thức ăn. Người ta cho rằng nếu Paul chọn hộp gắn cờ nước nào thì đội bóng của nước đó thắng. Paul chọn ngẫu nhiên một hộp. Tính xác suất để Paul dự đoán đội Tây Ban Nha thắng.
Xác suất của biến cố A trong trò chơi rút thẻ từ trong hộp bằng \(\frac{{n\left( A \right)}}{n}\), với n(A) là số các kết quả thuận lợi cho biến cố A; n là:
Gieo một con xúc xắc 6 mặt cân đối. Tính xác suất của biến cố “Gieo được mặt có số chấm nhiều hơn 6”.
Chọn ngẫu nhiên một số trong bốn số 11, 12, 13, 14. Tính xác suất để chọn được số chia hết cho 6.
Gieo một con xúc xắc 6 mặt một số lần ta được kết quả như sau:
Mặt |
1 chấm |
2 chấm |
3 chấm |
4 chấm |
5 chấm |
6 chấm |
Số lần |
8 |
7 |
3 |
12 |
10 |
10 |
Hãy tính xác suất của biến cố “gieo được mặt có số lẻ chấm” trong 50 lần gieo trên.
Một xạ thủ bắn 20 mũi tên vào một tấm bia. Điểm số ở các lần bắn được cho bởi bảng sau:
7 |
8 |
9 |
9 |
8 |
10 |
10 |
9 |
8 |
10 |
8 |
8 |
9 |
10 |
10 |
7 |
6 |
6 |
9 |
9 |
Xác suất để xạ thủ bắn được 10 điểm là:
Tung hai đồng xu cân đối một số lần ta được kết quả như sau:
Biến cố |
Hai đồng sấp |
Một đồng sấp, một đồng ngửa |
Hai đồng ngửa |
Số lần |
22 |
20 |
8 |
Xác suất của biến cố “Một đồng sấp, một đồng ngửa” là:
Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:
Ngữ văn Toán |
Giỏi |
Khá |
Trung bình |
Giỏi |
40 |
20 |
15 |
Khá |
15 |
30 |
10 |
Trung bình |
5 |
15 |
20 |
Quan sát bảng trên và cách đọc bảng dữ liệu (ví dụ: số học sinh môn Toán có kết quả kiểm tra Khá và môn Ngữ Văn có kết quả kiểm tra Trung bình là 10 học sinh), hãy tính xác suất của biến cố một học sinh được chọn ra một cách ngẫu nhiên có kết quả loại Khá trở lên ở cả hai môn.
Một hộp có 10 lá thăm có kích thước giống nhau và được đánh số từ 1 đến 10. Lấy ngẫu nhiên 1 lá thăm từ hộp. Tính xác suất của biến cố “Lấy được là thăm ghi số 9”.
Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:
Quý |
Số ca xét nghiệm |
Số ca dương tính |
I |
210 |
21 |
II |
150 |
15 |
III |
180 |
9 |
IV |
240 |
48 |
Có bao nhiêu quý có xác suất của biến cố “một ca có kết quả dương tính” dưới \(\frac{1}{{10}}?\)
Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. Lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:
Màu bút |
Xanh |
Vàng |
Đỏ |
Số lần |
14 |
10 |
16 |
Tính xác suất của biến cố không lấy ra được bút màu vàng?
Nếu tung một đồng xu 30 lần liên tiếp có 12 lần xuất hiện mặt ngửa thì xác suất xuất hiện mặt sấp bằng bao nhiêu?
Đội múa có 1 bạn nam và 5 bạn nữ. Chọn ngẫu nhiên 1 bạn để phỏng vấn. Biết mỗi bạn đều có khả năng được chọn. Tính xác suất của biến cố “Bạn được chọn là nam”.