Tìm x nguyên để \[A = \frac{{35 - \sqrt x }}{{\sqrt 9 + 2}}\] có giá trị nguyên biết x < 30?
</>
A. 4;
B. 9;
C.16;
D. 25.
Đáp án đúng là: D
Ta có \[A = \frac{{35 - \sqrt x }}{{\sqrt 9 + 2}} = \frac{{35 - \sqrt x }}{{3 + 2}} = \frac{{35 - \sqrt x }}{5}\].
Để A nhận giá trị nguyên thì \[(35 - \sqrt x )\,\, \vdots \,\,5\].
Mà 35 ⋮ 5 nên \[\sqrt x \,\, \vdots \,\,5\]
Mặt khác, x < 30 nên x = 25.
Vậy chọn đáp án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong các số \(\frac{2}{{11}};\,\,0,232323...;\,\,0,20022...;\,\,\sqrt {\frac{1}{4}} \) , số vô tỉ?
Biểu thức \(\frac{{\sqrt {{{23}^2}} + \sqrt {{{12}^2}} }}{{\sqrt {{{13}^2}} + \sqrt 4 }}\) sau khi rút gọn sẽ bằng: