Cho ∆MNP vuông tại M có . Trên tia đối của tia MP, lấy điểm Q sao cho MQ = MP. Tính số đo .
A. 30°;
Đáp án đúng là: B
Ta có MQ = MP (giả thiết).
Suy ra M là trung điểm PQ (1)
Lại có ∆MNP vuông tại M.
Suy ra NM ⊥ MP hay NM ⊥ PQ (2)
Từ (1), (2), ta suy ra NM là đường trung trực của đoạn thẳng PQ.
Do đó NQ = NP (tính chất đường trung trực của đoạn thẳng)
Suy ra ∆PQN cân tại N.
Khi đó (tính chất tam giác cân)
∆PQN có: (định lí tổng ba góc trong một tam giác)
Suy ra .
Do đó .
Vậy ta chọn đáp án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho , Ot là tia phân giác của và H là một điểm bất kì thuộc tia Ot. Qua H, lần lượt vẽ đường thẳng vuông góc với Ox tại A, cắt Oy tại C và đường thằng vuông góc với Oy tại B, cắt Ox tại D. Hỏi OH là đường trung trực của đoạn thẳng:
Cho . Trên các tia Ox, Oy lần lượt lấy hai điểm A, B (không trùng với O). Đường trung trực của các đoạn thẳng OA và OB cắt nhau tại H. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC vuông tại A có . Trên tia đối của tia AC lấy điểm D sao cho AC = AD. ∆BCD là tam giác gì?
Cho ∆DEF cân tại D. Lấy điểm K nằm trong ∆DEF sao cho KE = KF. Kẻ KP vuông góc với DE (P ∈ DE), KQ vuông góc DF (Q ∈ DF). Điểm K thuộc đường trung trực của đoạn thẳng:
Cho ∆ABC cố định, đường phân giác AI (I ∈ BC). Trên đoạn thẳng IC lấy điểm H. Từ H kẻ đường thẳng song song với AI, cắt AB kéo dài tại E và cắt AC tại F. Chọn khẳng định đúng.
Hai nhà máy được xây dựng tại hai địa điểm A và B cùng nằm về một phía của khúc sông thẳng. Lấy điểm mốc D ở phía bên kia bờ sông là điểm đối xứng của nhà máy A qua khúc sông thẳng.
Tìm trên bờ sông một địa điểm C để xây dựng trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ C đến A và đến B nhỏ nhất.
Cho đoạn thẳng AB = 5 cm. Vẽ đường tròn tâm A, bán kính 4 cm và đường tròn tâm B, bán kính 3 cm. Hai đường tròn này cắt nhau tại D và E. Khẳng định nào sau đây đúng nhất?
Cho đường thẳng d cắt đoạn thẳng AB tại một điểm khác trung điểm của AB. Xác định vị trí điểm M trên đường thẳng d sao cho M cách đều hai điểm A, B.
Cho đoạn thẳng AB. Dựng các tam giác PAB cân tại P và tam giác QAB cân tại Q như hình bên.
Chọn khẳng định đúng nhất.
Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.
Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.
Cho ∆ABC nhọn có AB < AC. Xác định điểm D trên cạnh AC sao cho DA + DB = AC.