Cho hai đường thẳng xx’ và yy’ cắt nhau tại O sao cho \(\widehat {xOy} = {60^o}\). Gọi Ot là tia phân giác của \(\widehat {x'Oy}'\). Số đo \(\widehat {xOt}\) là:
Hướng dẫn giải:
Đáp án đúng là: A
Vì \(\widehat {x'Oy}'\) và \(\widehat {xOy}\) là hai góc đối đỉnh nên \(\widehat {x'Oy}'\) = \(\widehat {xOy}\) = 60°.
Do Ot là tia phân giác của \(\widehat {x'Oy}'\) nên:
\(\widehat {x'Ot} = \frac{1}{2}\widehat {x'Oy'} = \frac{1}{2}{.60^o} = {30^o}\).
Vì \(\widehat {xOt}\) và \(\widehat {x'Ot}\) là hai góc kề bù nên \(\widehat {xOt}\) + \(\widehat {x'Ot}\) = 180°.
Suy ra \(\widehat {xOt}\) = 180° − \(\widehat {x'Ot}\) = 180° − 30° = 150°.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {xAz}\);
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {yAt}\).
Hướng dẫn giải:
Cho hai đường thẳng xt và yz cắt nhau tại A sao cho \(\widehat {xAy} = 5{5^o}\). Hãy tính số đo các góc sau:
\(\widehat {zAt}\);
Cho \(\widehat {xOy} = {30^o}\); Oy là tia phân giác \(\widehat {xOz}\). Khi đó \(\widehat {xOz}\) bằng:
Cho \(\widehat {xOy}\)và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy}\) = 60° và tia Ot là tia phân giác của \(\widehat {yOz}\). Số đo góc \(\widehat {xOt}\) là:
Cho hai đường thẳng xx’ và yy’ cắt nhau như hình vẽ. Biết \(\widehat {xOy'} - \widehat {xOy} = {90^o}\). Tính \(\widehat {xOy}\).
Cho hai đường thẳng xx’ và yy’ cắt nhau như hình vẽ. Biết \(\widehat {xOy'} = 2\widehat {xOy}\). Tính \(\widehat {xOy}\).