A. Fπ=−1
B. Fπ=12
C. Fπ=1
D. Fπ=0
u=xdv=1cos2xdx⇒du=dxv=tanx⇒F(x)=xtanx−∫tanxdx+C=xtanx−∫sinxcosxdx+C=xtanx+∫d(cosx)cosx+C=xtanx+ln|cosx|+C.⇒F(0)=C=0⇒F(π)=0
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
Tính I=∫lnx+x2+1dx ta được: