Người ta thả một viên billiards snooker có dạng hình cầu với bán kính nhỏ hơn 4,5cm vào một chiếc cốc hình trụ đang chứa nước thì viên billiards đó tiếp xúc với đáy cốc và tiếp xúc với mặt nước sau khi dâng (tham khảo hình vẽ bên). Biết rằng bán kính của phần trong đáy cốc bằng 5,4cm và chiều cao của mực nước ban đầu trong cốc bằng 4,5cm. Bán kính của viên billiards đó bằng
A.4,2cm.
B.3,6cm.
C.2,6cm.
Thể tích mực nước ban đầu là:
Gọi R là bán kính của viên bi ta có sau khi thả viên bi vào cốc, chiều cao của mực nước bằng 2R, do đó tổng thể tích của nước và bi sau khi thả viên bi vào trong cốc là:
Thể tích của quả cầu là:
Ta có:
Giải phương trình trên với điều kiện
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho một hình hộp chữ nhật kích thước chứa một khối cầu lớn có bán kính bằng 2 và 8 khối cầu nhỏ có bán kính bằng 1. Biết rằng các khối cầu đều tiếp xúc với nhau và tiếp xúc với các mặt của hình hộp (tham khảo hình vẽ). Thể tích của khối hộp bằng
Cho hình chóp S.ABC có . Gọi B′,C′ lần lượt là hình chiếu vuông góc của A lên SB,SC. Tính bán kính mặt cầu ngoại tiếp khối chóp A.BCC′B′ theo b,c,
Cho tứ diện đều ABCD có cạnh a. Một mặt cầu tiếp xúc với các mặt của tứ diện có bán kính là:
Một hộp đựng phấn hình hộp chữ nhật có chiều dài 30cm, chiều rộng 5cm và chiều cao 6cm. Người ta xếp thẳng đứng vào đó các viên phấn giống nhau, mỗi viên phấn là khối trụ có chiều cao h=6cm và bán kính đáy . Hỏi có thể xếp được tối đa bao nhiêu viên phấn.
Công thức tính bán kính mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy là:
Cho một lập phương có cạnh bằng a. Tính diện tích mặt cầu nội tiếp hình lập phương đó
Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2; . Tính diện tích mặt cầu ngoại tiếp lăng trụ trên.
Cho hình chóp đều nn cạnh (n ≥ 3)). Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là R và góc giữa mặt bên và mặt đáy bằng 600 , thể tích khối chóp bằng . Tìm n?
Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2;2;1. Tìm bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có . Gọi M là trung điểm BB’. Bán kính mặt cầu ngoại tiếp khối chóp M.A’B’C’ bằng:
Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA = a, SB = 2a, SC = 3a . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại BB có cạnh và góc giữa DC và mặt phẳng (ABC) bằng 450. Tính thể tích mặt cầu ngoại tiếp tứ diện.
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, AB = AC = a, AA’ =. Diện tích mặt cầu ngoại tiếp tứ diện CA′B′C′ là: