Cho tam giác ABC. Từ điểm M trên cạnh BC vẽ MD//AB, ME//AC. Xác định vị trí của điểm M để tia MA là tia phân giác của góc DME.
Ta có MD//AB suy ra (cặp góc so le trong); ME//AC suy ra (cặp góc so le trong).
Tia MA nằm giữa hai tia MD và ME. Do đó tia MA là tia phân giác của góc DME.
M là giao điểm của BC với tia phân giác của góc A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC, ; . Trên nửa mặt phẳng bờ BC có chứa A vẽ các tia Cx và Cy sao cho ACx=75; BCy=120. Chứng tỏ rằng các tia Cx và Cy trùng nhau.
Cho tam giác ABC. Vẽ điểm M sao cho góc BAM bằng và so le trong với góc B. Vẽ điểm N sao góc CAN bằng và so le trong với góc C. Chứng tỏ rằng ba điểm M, A, N thẳng hàng.
Cho điểm O ở ngoài đường thẳng xy. Qua O vẽ n đường thẳng. Xác định giá trị nhỏ nhất của n để trong số các đường thẳng đã vẽ, ít nhất cũng có 10 đường thẳng cắt xy.
Qua điểm A ở ngoài đường thẳng a vẽ 101 đường thẳng. Chứng tỏ rằng ít nhất cũng có 100 đường thẳng cắt a.
Cho góc AOB. Trên tia OA lấy điểm M, trên tia OB lấy điểm N. Vẽ ra ngoài góc AOB các tia Mx và Ny song song với nhau. Cho biết , . tính số đo của góc AOB.
Hình 4.11 có ABAC, CD và OE . Biết ; . Tìm giá trị m để tia OE là tia phân giác của góc AOC.