Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng ; AM=AB sao cho M và C khác phía đối với đường thẳng AB. Vẽ đoạn thẳng và AN=AC sao cho N và B khác phía đối với đường thẳng AC. Gọi I, K lần lượt là trung điểm BN và CM. Chứng minh rằng:
a,
a, nên
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC. Từ B kẻ ; . Gọi H là giao điểm của BD và CE. Biết rằng .
Cho . Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho EF=ED. Chứng minh:
a, ,
Cho tam giác ABC có . Các tia phân giác góc B, góc C cắt nhau tại O và cắt AC; AB theo thứ tự D; E. Chứng minh rằng: OD=OE.
Cho có . Gọi M là trung điểm cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C kẻ tia Ax vuông góc với AB, trên tia Ax lấy điểm D sao cho AD= AB. Trên nửa mặt phẳng bờ AC không chứa điểm B kẻ Ay vuông góc với AC. Trên tia Ay lấy điểm E sao cho . Trên tia đối tia MA lấy MN= MA. Chứng minh rằng:
a,
Cho có . Lấy M thuộc cạnh AB; lấy N thuộc tia đối của tia CA sao cho CM=BM. Gọi I là một điểm sao cho ; IM=IN. Chứng minh rằng: .
Cho tam giác ABC có , tia phân giác của cắt BC tại D. Trên AD lấy điểm O, trên tia đối của tia AC lấy điểm M sao cho . Trên tia đối của tia AB lấy điểm N sao cho . Chứng minh rằng .
Để đo khoảng cách AB mà không đo trực tiếp, người ta đã thực hiện như sau:
- Chọn vị trí điểm O.
- Lấy điểm C trên tia đối tia OA sao cho .
- Lấy điểm D trên tia đối tia OB sao cho .
- Đo độ dài đoạn thẳng CD, đó chính là khoảng cách AB. Hãy giải thích tại sao?
Cho có . Trên nửa mặt phẳng bờ BC chứa điểm A. Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho DB=BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA. Trên tia By lấy điểm E sao cho . Chứng minh rằng:
a,
Cho .
a) Viết kí hiệu về sự bằng nhau của hai tam giác đó với ba cách khác.
Cho vuông tại A, . Tia phân giác của cắt AC tại D. Trên cạnh BC lấy điểm E sao cho . Vẽ AH vuông góc với BC tại H.
a) Chứng minh rằng .