Cho ∆ABC cân tại A có \(\widehat {{\rm{BAC}}} = 82^\circ \), đường trung trực của AB cắt BC tại D. Số đo của \(\widehat {{\rm{ADB}}}\) là
Hướng dẫn giải
Đáp án đúng là: B
Do ∆ABC cân tại A nên \(\widehat {\rm{B}} = \widehat {\rm{C}}\).
Xét ∆ABC có \(\widehat {{\rm{BAC}}} + \widehat {\rm{B}} + \widehat {\rm{C}} = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(82^\circ + \widehat {\rm{B}} + \widehat {\rm{B}} = 180^\circ \) (vì \(\widehat {\rm{B}} = \widehat {\rm{C}}\))
Suy ra 2\(\widehat {\rm{B}} = 180^\circ - 82^\circ = 98^\circ \)
Nên \(\widehat {\rm{B}} = 98^\circ :2 = 49^\circ \).
Theo bài ra ta có D nằm trên đường trung trực của AB nên DA = DB.
Suy ra ∆DAB cân tại D
Do đó \(\widehat {\rm{B}} = \widehat {{\rm{BAD}}} = 49^\circ \) (tính chất tam giác cân)
Xét ∆DAB có: \(\widehat {\rm{B}} + \widehat {{\rm{BAD}}} + \widehat {{\rm{ADB}}} = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(\widehat {{\rm{ADB}}} = 180^\circ - \widehat {\rm{B}} - \widehat {{\rm{ABD}}} = 180^\circ - 49^\circ - 49^\circ = 82^\circ \).
Vậy ta chọn phương án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình vẽ, biết AC = 8 cm và chu vi ∆ABC bằng 22 cm.
Độ dài cạnh BC là
Cho đoạn thẳng AB = 5 cm. Vẽ đường tròn tâm A, bán kính 4 cm và đường tròn tâm B, bán kính 3 cm. Hai đường tròn này cắt nhau tại D và E. Khẳng định nào sau đây đúng nhất?
Cho hình dưới đây:
Biết điểm M là điểm bất kì nằm trên đường thẳng a. Khẳng định đúng là:
Cho ∆MNP cân tại M có \[\widehat {\rm{N}} = 50^\circ \] và MO là đường trung trực của NP (O ∈ NP). Số đo của \(\widehat {{\rm{OMP}}}\) là
Cho \(\widehat {{\rm{xOy}}} = 30^\circ \). Trên tia Ox lấy điểm E, trên tia Oy lấy điểm F. Lấy điểm D sao cho OF là đường trung trực của ED. Chọn khẳng định đúng: