Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 566

Cho phương trình b2x2 – (b2 + c2 – a2)x + c2 = 0 với a, b, c là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?

A. Phương trình luôn có hai nghiệm phân biệt

B. Phương trình luôn có nghiệm kép

C. Chưa đủ điều kiện để kết luận

D. Phương trình luôn vô nghiệm

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

VietJack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để phương trình mx2 – 2(m – 1)x + 2 = 0 có nghiệm kép và tìm nghiệm kép đó

Xem đáp án » 19/08/2021 12,807

Câu 2:

Cho phương trình mx2 – 4(m – 1) x + 2 = 0. Tìm các giá trị của m để phương trình vô nghiệm.

Xem đáp án » 19/08/2021 1,804

Câu 3:

Tìm các giá trị của m để phương trình mx2 – 2(m – 1)x + m + 2 = 0 có nghiệm.

Xem đáp án » 19/08/2021 1,731

Câu 4:

Trong trường hợp phương trình −x2 + 2mx − m2 – m = 0 có hai nghiệm phân biệt. Hai nghiệm của phương trình là?

Xem đáp án » 19/08/2021 1,434

Câu 5:

Cho phương trình (m + 1)x2 – 2(m + 1)x + 1 = 0. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt

Xem đáp án » 19/08/2021 526

Câu 6:

Phương trình (m – 3)x2 – 2(3m + 1)x + 9m – 1 = 0 có nghiệm khi?

Xem đáp án » 19/08/2021 517

LÝ THUYẾT

1. Công thức nghiệm thu gọn

a) Biệt thức '

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b’ ta có biệt thức ' như sau:

' = b’2 - ac

Ta sửa dụng biết thức ' để giải phương trình bậc hai.

b) Công thức nghiệm thu gọn của phương trình bậc hai

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) có b = 2b’ và biệt thức ' = b’2 - ac

+ Nếu ' > 0 thì phương trình có hai nghiệm phân biệt là x1=b'+Δ'a;x2=b'Δ'a 

+ Nếu ' = 0 thì phương trình có nghiệm kép là

x1=x2=b'a

+ Nếu ' < 0 thì phương trình vô nghiệm.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »