Thứ bảy, 04/01/2025
IMG-LOGO

Câu hỏi:

23/07/2024 213

Giá trị của biểu thức Q = a3 + b3 biết a + b = 5 và ab = -3

A. Q = 170

Đáp án chính xác

B. Q = 140

C. Q = 80

D. Q = -170

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab(a + b)

Suy ra a3 + b3 = (a + b)3 – 3ab(a + b)

Hay Q = (a + b)3 – 3ab(a + b)

Thay a + b = 5 và a.b = -3 vào Q = (a + b)3 – 3ab(a + b) ta được

Q = 53 – 3.(-3).5 = 170

Vậy Q = 170

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức H = (x + 5)(x2 – 5x + 25) – (2x + 1)3 + 7(x – 1)3 – 3x(-11x + 5) ta được giá trị của H là

Xem đáp án » 19/02/2022 252

Câu 2:

Giá trị của biểu thức P = -2(x3 + y3) + 3(x2 + y2) khi x + y = 1 là

Xem đáp án » 19/02/2022 249

Câu 3:

Cho 2x – y = 9. Giá trị của biểu thức A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11 bằng

Xem đáp án » 19/02/2022 244

Câu 4:

Cho a, b, c là các số thỏa mãn điều kiện a = b + c. Khi đó

Xem đáp án » 19/02/2022 243

Câu 5:

Cho A = 13+ 23 + 33 + 43 + … + 103. Khi đó

Xem đáp án » 19/02/2022 228

Câu 6:

Cho (a + b + c)2 + 12 = 4(a + b + c) + 2(ab + bc + ca). Khi đó

Xem đáp án » 19/02/2022 224

Câu 7:

Cho a + b + c = 0. Giá trị của biểu thức B = a3 + b3 + c3 – 3abc bằng

Xem đáp án » 19/02/2022 221

Câu 8:

Cho M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1) và N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x.

Chọn câu đúng

Xem đáp án » 19/02/2022 219

Câu 9:

Cho P = (4x + 1)3 – (4x + 3)(16x2 + 3) và Q = (x – 2)3 – x(x + 1)(x – 1) + 6x(x – 3) + 5x. Chọn câu đúng.

Xem đáp án » 19/02/2022 209

LÝ THUYẾT

1. Tổng hai lập phương.

Tổng của lập phương hai biểu thức bằng tích của tổng hai biểu thức và bình phương thiếu của hiệu hai biểu thức đó.

Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = (A + B)(A2  AB + B2)

Chú ý: A2  AB + B2 được gọi là bình phương thiếu của một hiệu.

2. Hiệu hai lập phương.

Hiệu của lập phương hai biểu thức bằng tích của hiệu hai biểu thức và bình phương thiếu của tổng hai biểu thức đó.

Với A, B là các biểu thức tùy ý, ta có: A3  B3 = (A  B)(A2 + AB + B2)

Chú ý: A2 + AB + B2 được gọi là bình phương thiếu của một tổng.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »