Cho biết x3 = 2p + 1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.
A. x = 9
B. x = 7
C. x = 5
D. x = 3
Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x3 = 2p + 1 nên x3 cũng là một số lẻ, suy ra x là số lẻ
Gọi x = 2k + 1 (k N). ta có
x3 = 2p + 1 (2k + 1)3 = 2p + 1
8k3 + 12k2 + 6k + 1 = 2p + 1 2p = 8k3 + 12k2 + 6k
p = 4k3 + 6k2 + 3k = k(4k2 + 6k + 3)
Mà p là số nguyên tố nên k = 1 => x = 3
Vậy số cần tìm là x = 3
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho (a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b). Khi đặt nhân tử chung (a – b) ra ngoài thì nhân tử còn lại là
Cho 4xn+2 – 8xn (n Є N*). Khi đặt nhân tử chung xn ra ngoài thì nhân tử còn lại là
Biết x2 + y2 = 1. Tính giá trị của biểu thức M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)
Cho x1 và x2 (x1 > x2) là hai giá trị thỏa mãn x(3x – 1) – 5(1 – 3x) = 0. Khi đó 3x1 – x2 bằng
Cho A = 2019n+1 – 2019n. Khi đó A chia hết cho số nào dưới đây với mọi n N.
Cho x0 là giá trị lớn nhất thỏa mãn 4x4 – 100x2 = 0. Chọn câu đúng.
Cho x0 là giá trị lớn nhất thỏa mãn 25x4 – x2 = 0. Chọn câu đúng.
Biết a – 2b = 0. Tính giá trị của biểu thức B = a(a – b)3 + 2b(b – a)3
Tìm một số khác 0 biết rằng bình phương của nó bằng 5 lần lập phương của số ấy
Tìm một số khác 0 biết rằng bình phương của nó bằng 5 lần lập phương của số ấy
Khái niệm: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Phương pháp: Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.
- Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.