Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 654

Có bao nhiêu cặp số nguyên (x; y) thỏa mãn x2 + 102 = y2

A. 0

Đáp án chính xác

B. 1

C. 2

D. 3

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Ta có x2 + 102 = y2  y2 – x2 = 102

Nhận thấy hiệu hai bình phương là một số chẵn nên x, y cùng là số chẵn hoặc cùng là số lẻ

Suy ra y – x; y + x luôn là số chẵn

Lại có y2 – x2 = 102  (y – x)(y + x) = 102

Mà (y – x) và (y + x) cùng là số chẵn.

Suy ra (y – x)(y + x) chia hết cho 4 mà 102 không chia hết cho 4 nên không tồn tại cặp số x; y thỏa mãn đề bài

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (x2 + y2 – 17)2 – 4(xy – 4)2 = (x + y + 5)(x – y + 3)(x + y + m)(x – y + n). Khi đó giá trị của m.n là

Xem đáp án » 20/02/2022 330

Câu 2:

Cho các phương trình (x + 2)3 + (x – 3)3 = 0 (1) ; (x2 + x – 1)2 + 4x2 + 4x = 0 (2). Chọn câu đúng

Xem đáp án » 20/02/2022 284

Câu 3:

Cho x6 – 1 = (x + A)(x + B)(x4 + x2 + C), biết A, B, C là các số nguyên. Khi đó A + B + C bằng

Xem đáp án » 20/02/2022 284

Câu 4:

Gọi x1; x2; x3 là các giá trị thỏa mãn 4(3x – 5)2 – 9(9x2 – 25)2 = 0. Khi đó x1 + x2 + x3 bằng

Xem đáp án » 20/02/2022 263

Câu 5:

Cho (x + y)3 – (x – y)3 = A.y(Bx2 + Cy2), biết A, B, C là các số nguyên. Khi đó A + B + C bằng

Xem đáp án » 20/02/2022 259

Câu 6:

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

Xem đáp án » 20/02/2022 242

Câu 7:

Cho x + y = a + b; x2 + y2 = a2 + b2. Với n  N*, chọn câu đúng

Xem đáp án » 20/02/2022 242

Câu 8:

Cho x + n = 2(y – m), khi đó giá trị của biểu thức A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2 bằng

Xem đáp án » 20/02/2022 239

Câu 9:

Cho 9a2 – (a – 3b)2 = (m.a + n.b)(4a – 3b) với m, n  R. Khi đó, giá trị của m và n là

Xem đáp án » 20/02/2022 221

LÝ THUYẾT

Khái niệm: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

 Khi áp dụng phương pháp dùng hằng đẳng thức để phân tích đa thức thành nhân tử, ta cần lưu ý:

- Trước tiên nhận xét xem các hạng tử của đa thức có chứa nhân tử chung không, nếu có thì áp dụng phương pháp đặt thành nhân tử chung.

- Nếu không thì ta có thể sử dụng các hằng đẳng thức sau đây để phân tích đa thức thành nhân tử:

1) (A + B)2 = A2 + 2AB + B2

2) (A  B)2 = A2  2AB + B2

3) A2   B2 = (A  B)(A + B)

4) (A + B)3 = A3 + 3A2B + 3AB2 + B3

5) (A  B)3 = A3  3A2B + 3AB2  B3

6) A3 + B3 = (A + B)(A2  AB + B2)

7) A3  B3 = (A  B)(A2 + AB + B2)

Câu hỏi mới nhất

Xem thêm »
Xem thêm »