Có bao nhiêu cặp số nguyên (x; y) thỏa mãn x2 + 102 = y2
A. 0
B. 1
C. 2
D. 3
Ta có x2 + 102 = y2 y2 – x2 = 102
Nhận thấy hiệu hai bình phương là một số chẵn nên x, y cùng là số chẵn hoặc cùng là số lẻ
Suy ra y – x; y + x luôn là số chẵn
Lại có y2 – x2 = 102 (y – x)(y + x) = 102
Mà (y – x) và (y + x) cùng là số chẵn.
Suy ra (y – x)(y + x) chia hết cho 4 mà 102 không chia hết cho 4 nên không tồn tại cặp số x; y thỏa mãn đề bài
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho (x2 + y2 – 17)2 – 4(xy – 4)2 = (x + y + 5)(x – y + 3)(x + y + m)(x – y + n). Khi đó giá trị của m.n là
Cho các phương trình (x + 2)3 + (x – 3)3 = 0 (1) ; (x2 + x – 1)2 + 4x2 + 4x = 0 (2). Chọn câu đúng
Cho x6 – 1 = (x + A)(x + B)(x4 + x2 + C), biết A, B, C là các số nguyên. Khi đó A + B + C bằng
Gọi x1; x2; x3 là các giá trị thỏa mãn 4(3x – 5)2 – 9(9x2 – 25)2 = 0. Khi đó x1 + x2 + x3 bằng
Cho (x + y)3 – (x – y)3 = A.y(Bx2 + Cy2), biết A, B, C là các số nguyên. Khi đó A + B + C bằng
Cho x + n = 2(y – m), khi đó giá trị của biểu thức A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2 bằng
Cho 9a2 – (a – 3b)2 = (m.a + n.b)(4a – 3b) với m, n R. Khi đó, giá trị của m và n là
Khái niệm: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Khi áp dụng phương pháp dùng hằng đẳng thức để phân tích đa thức thành nhân tử, ta cần lưu ý:
- Trước tiên nhận xét xem các hạng tử của đa thức có chứa nhân tử chung không, nếu có thì áp dụng phương pháp đặt thành nhân tử chung.
- Nếu không thì ta có thể sử dụng các hằng đẳng thức sau đây để phân tích đa thức thành nhân tử:
1)
2)
4)
5)
6)
7)