Cho ab + bc + ca = 1. Khi đó bằng
Vì ab + bc + ca = 1 nên
+ 1 = + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)
+ 1 = + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)
+ 1 = + ab + bc + ca = c(c + b) + a(b + c) = (a + c)(b + c)
Từ đó suy ra
= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)
Vậy
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho |x| < 2. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức A =
Tính giá trị của biểu thức A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1 tại x = 5
Khái niệm: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Khi thực hiện phân tích đa thức thành nhân tử các biểu thức phức tạp ta thường sử dụng phối hợp cả ba phương pháp phân tích đa thức thành nhân tử cơ bản: phương pháp nhân tử chung, phương pháp hằng đẳng thức, phương pháp nhóm hạng tử.
Chú ý: Nếu các hạng tử của đa thức có nhân tử chung thì ta nên sử dụng phương pháp đặt nhân tử chung trước để đa thức trở lên đơn giản hơn rồi mới tiếp tục phân tích đến kết quả cuối cùng.
Ví dụ: Phân tích đa thức thành nhân tử.
Lời giải:
=
=
=