Cho A = (3a2b)3(ab3)2; B = (a2b)4. Khi đó A : B bằng
Ta có A = (3a2b)3(ab3)2 = 33.(a2)3.b3.a2(b3)2
= 27a6.b3.a2.b6 = 27a8b9
B = (a2b)4 = (a2)4.b4 = a8b4
Khi đó A : B = 27a8b9 : a8b4 = 27b5
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho (3x – 4y).(…) = 27x3 – 64y3. Điền vào chỗ trống (…) đa thức thích hợp
Cho (2x+ y2).(…) = 8x3 + y6. Điền vào chỗ trống (…) đa thức thích hợp
Tính giá trị của biểu thức D = (15xy2 + 18xy3 + 16y2) : 6y2 – 7x4y3 : x4y tại và y = 1
Cho (7x4 – 21x3) : 7x2 + (10x + 5x2) : 5x = (…). Điền vào chỗ trống đa thức thích hợp
Giá trị biểu thức A = 15x5y4z3 : (-3x4y4z2) với x = -2; y = 2004; z = 10 là
Cho (27x3 + 27x2 + 9x + 1) : (3x + 1)2 = (…) Điền vào chỗ trống đa thức thích hợp
Khái niệm: Cho A và B là hai đơn thức, B ≠ 0.
Ta nói đơn thức A chia hết cho đơn thức B nếu tìm được một đơn thức Q sao cho
A = B.Q
A được gọi là đơn thức bị chia, B được gọi là đơn thức chia, Q được gọi là đơn thức thương.
Kí hiệu: Q = A : B hoặc Q = .
Nhận xét: Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Quy tắc: Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau:
- Chia hệ số của đơn thức A cho hệ số của đơn thức B.
- Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
- Nhân các kết quả vừa tìm được với nhau.
Chú ý: Với mọi x ≠ 0, m, n ∈ ℕ, m ≥ n thì
nếu m > n
= 1 nếu m = n.
Ví dụ:
a)
b) .