Cho tam giác nhọn ABC (AB < AC) nội tiếp (O; R). Gọi BD, CE là hai đường cao của tam giác. Gọi d là tiếp tuyến tại A của (O; R) và M, N lần lượt là hình chiếu của B, C trên d. Hệ thức nào dưới đây đúng?
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Từ điểm M nằm ngoài (O) kẻ các tiếp tuyến MD; MB và cát tuyến MAC với đường tròn (A nằm giữa M và C). Hệ thức nào dưới đây là đúng?
Cho tam giác ABC nội tiếp đường tròn (O), tiếp tuyến tại A của (O) cắt BC tại P. Tia phân giác trong góc A cắt BC và (O) lần lượt tại D và M. Khi đó MA. MD bằng:
Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C lên AB. Biết MC = a, MB = 3a. Độ dài đường kính AB là?
Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì = 30o. Số đo góc AOI là:
Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB. Giả sử OA = 3cm; MC = 6cm. Độ dài CH là:
Cho tam giác MNP nội tiếp đường tròn (O), tiếp tuyến tại M của (O) cắt NP tại E. EM = 4cm. Tia phân giác trong góc M cắt NP và (O) lần lượt tại I và D. Chọn câu đúng?
Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB. Giả sử = 30o. Chọn câu sai:
Cho tam giác MNP nội tiếp đường tròn (O), tiếp tuyến tại M của (O) cắt NP tại E. EM = 4cm. Tích EP. EN bằng:
Cho tam giác giác nhọn ABC (AB < AC) nội tiếp (O; R). Gọi BD, CE là hai đường cao của tam giác. Gọi xy là tiếp tuyến tại A của (O; R) và I, K lần lượt là hình chiếu của B, C trên xy. Tam giác IAC đồng dạng với tam giác?