Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn? Hãy chọn câu đúng?
A.
B. y < 10 - 2x
C.
D. 0 + 0.y ≥ 8
Đáp án C
Bất phương trình dạng ax + b > 0 (hoặc ax + b < 0, ax + b ≥ 0, ax + b ≤ 0) trong đó a và b là hai số đã cho, a ≠ 0, gọi là bất phương trình bậc nhất một ẩn.
Nên là bất phương trình bậc nhất một ẩn
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Hãy chọn câu đúng. Tập nghiệm của bất phương trình 1 - 3x ≥ 2 - x là?
Biểu diễn tập nghiệm của bất phương trình x ≥ 8 trên trục số, ta được?
Hãy chọn câu đúng, x = -3 không là nghiệm của bất phương trình nào dưới đây?
Bất phương trình bậc nhất 2x - 2 > 4 có tập nghiệm biểu diễn bởi hình vẽ sau?
Hãy chọn câu đúng. Bất phương trình 2 + 5x ≥ -1 - x có nghiệm là?
Biểu diễn tập nghiệm của bất phương trình x > 8 trên trục số, ta được?
Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn? Hãy chọn câu đúng?
Bất phương trình bậc nhất 2x + 3 ≤ 9 có tập nghiệm biểu diễn bởi hình vẽ sau?
Bất phương trình x + 3 < 1 tương đương với bất phương trình sau?
Bất phương trình x - 2 < 1 tương đương với bất phương trình sau?
1. Bất phương trình một ẩn
- Định nghĩa bất phương trình một ẩn: Bất phương trình ẩn x là hệ thức A (x) > B (x) hoặc A (x) < B (x) hoặc A (x) ≥ B (x) hoặc A (x) ≤ B (x).
Trong đó: A (x) gọi là vế trái; B(x) gọi là vế phải.
Ví dụ 1.
7x – 1 > 3x là bất phương trình với ẩn x;
2 – 6y = 3(y + 2) – 1 là bất phương trình với ẩn y;
2t – 9 = 2 + 5(t + 6) là bất phương trình với ẩn t.
- Nghiệm của bất phương trình là giá trị của ẩn để khi thay vào bất phương trình ta được một khẳng định đúng.
Ví dụ 2. Cho bất phương trình 4 + 3x > 2(x + 1) – 7 (1).
Với x = 1, ta có:
VT(1) = 4 + 3 . 1 = 7;
VP(1) = 2 . (1 + 1) – 7 = 2 . 2 – 7 = – 3.
Nhận thấy x = 1 thỏa mãn bất phương trình (1) nên x = 1 là nghiệm (hay nghiệm đúng) của bất phương trình (1).
2. Tập nghiệm của bất phương trình
- Tập hợp tất cả các nghiệm của một bất phương trình được gọi là tập nghiệm của bất phương trình đó.
- Giải bất phương trình là tìm tất cả các nghiệm của bất phương trình đó.
Ví dụ 3. Tập nghiệm của bất phương trình x < −3 là tập hợp các số nhỏ hơn −3, tức là tập hợp {x | x < −3}.
Ta biểu diễn tập hợp này trên trục số như hình vẽ:
Ví dụ 4. Tập nghiệm của bất phương trình x ≥ 5 là tập hợp các số lớn hơn hoặc bằng 5 tức là tập hợp {x | x ≥ 5}.
Ta biểu diễn tập hợp này trên trục số như hình vẽ:
3. Bất phương trình tương đương
- Hai bất phương trình tương đương nếu chúng có cùng một tập nghiệm.
- Để chỉ hai phương trình tương đương, ta dùng kí hiệu “ ” (đọc là tương đương).
Ví dụ 5. Hai phương trình x – 4 > 0 và x > 4 được gọi là tương đương với nhau vì chúng có cùng tập nghiệm là {x | x > 4}. Khi đó ta viết: x – 4 > 0 x > 4.