Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 334

Tập nghiệm nào sau đây là tập nghiệm của bất phương trình: x ≤ 2 ?

A. S = { x| x ≥ 2 }. 

B. S = { x| x ≤ 2 }. 

Đáp án chính xác

C. S = { x| x ≥ - 2 }. 

D. S = { x| x < 2}. 

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Tập nghiệm của bất phương trình: x ≤ 2 là S = { x| x ≤ 2 }.

Chọn đáp án B.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình vẽ sau biểu diễn tập nghiệm của bất phương trình nào

Bài tập: Bất phương trình một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Xem đáp án » 13/03/2022 384

Câu 2:

Nghiệm x = 3 là nghiệm của bất phương trình nào sau đây?

Xem đáp án » 13/03/2022 286

Câu 3:

Hình vẽ sau là tập nghiệm của bất phương trình nào?

Bài tập: Bất phương trình một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Xem đáp án » 13/03/2022 270

Câu 4:

Hỏi x = 2 là nghiệm của bất phương trình nào trong các bất phương trình sau:

Xem đáp án » 13/03/2022 251

Câu 5:

Hình vẽ sau biểu diễn tập nghiệm nào?

Bài tập: Bất phương trình một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Xem đáp án » 13/03/2022 251

Câu 6:

Cho bất phương trình 3x - 6 > 0. Trong các bất phương trình sau, bất phương trình nào tương đương với bất phương trình đã cho? 

Xem đáp án » 13/03/2022 249

Câu 7:

Bạn Huyền có 30 000 đồng,Huyền muốn mua 1 cái bút giá 8000 đồng và x quyển vở, biết giá mỗi quyển vở là 3000 đồng. Lập bất phương trình liên quan ẩn x?

Xem đáp án » 13/03/2022 245

Câu 8:

Lập bất phương trình cho bài toán sau: Cô Lan chia đều 20 cái kẹo cho 4 bạn nhỏ. Hỏi mỗi bạn được bao nhiêu cái kẹo để sau khi chia xong cô Lan vẫn còn kẹo? Trong đó , x là số kẹo mỗi bạn nhận được.

Xem đáp án » 13/03/2022 223

Câu 9:

Hình vẽ sau biểu diễn tập nghiệm nào?

Bài tập: Bất phương trình một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Xem đáp án » 13/03/2022 213

LÝ THUYẾT

1. Định nghĩa bất phương trình bậc nhất một ẩn

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a ≠ 0, được gọi là bất phương trình bậc nhất một ẩn.

Ví dụ 1.

2x – 3 > 0 là bất phương trình bậc nhất với ẩn x;

5(y + 2) – 1 ≤ 0 là bất phương trình bậc nhất với ẩn y.

2. Hai quy tắc biến đổi

a) Quy tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

Ví dụ 2. Giải bất phương trình: x − 12 > 6.

Lời giải:

x − 12 > 6

 x > 6 + 12 (chuyển vế − 3 và đổi dấu thành 3)

 x > 18.

Vậy tập nghiệm của bất phương trình là {x | x > 18}.

b) Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

- Giữ nguyên chiều bất phương trình nếu số đó dương.

- Đổi chiều bất phương trình nếu số đó âm.

Ví dụ 3. Giải các bất phương trình:

a) 0,25x > 2;

b)12x<5 .

Lời giải:

a) 0,25x ≥ 2

0,25x . 4 ≥ 2 . 4 (nhân cả hai vế với 4)

 x ≥ 8.

Vậy tập nghiệm của bất phương trình là {x | x ≥ 8}.

b)12x<5

12x  .  (2)>5  .  (2) (nhân cả hai vế với − 3 và đổi chiều)

 x > −10.

Vậy tập nghiệm của bất phương trình là {x | x > −10}.

3. Giải bất phương trình bậc nhất một ẩn

Áp dụng hai quy tắc biến đổi trên, ta giải bất phương trình bậc nhất một ẩn như sau:

Dạng ax + b > 0  ax > − b

 x > -ba nếu a > 0 hoặc x < -ba nếu a < 0.

Vậy bất phương trình có tập nghiệm là:

S=a>0x>ba

Hoặc S=a<0x<ba

Các dạng toán như ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 tương tự như trên.

Ví dụ 4. Giải các phương trình: 4x – 6 > 0.

Lời giải:

4x – 6 > 0

 4x > 6 (chuyển –6 sang VP và đổi dấu)

4x : 4 > 6 : 4 (chia cả hai vế cho 4)

.x>32

Vậy tập nghiệm của bất phương trình là x|x>32.

4. Giải bất phương trình đưa được về dạng ax + b < 0 ; ax + b > 0 ; ax + b ≤ 0 ;  ax + b ≥ 0

Cách giải phương trình đưa được về dạng ax + b > 0: Để giải các phương trình đưa được về ax + b > 0, ta thường biến đổi phương trình như sau:

Bước 1: Quy đồng mẫu hai vế và khử mẫu (nếu có).

Bước 2: Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax > – b.

Bước 3: Tìm x.

Các phương trình đưa được về dạng ax + b < 0, ax + b ≤ 0 hoặc ax + b ≥ 0 làm tương tự như trên.

Ví dụ 4. Giải các phương trình: 4x – 6 > 2x + 5.

Lời giải:

4x – 6 > 2x + 5

4x – 2x > 6 + 5

 2x > 11

2x : 2 > 11 : 2

x>112.

Vậy tập nghiệm của bất phương trình là x|x>112.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »