Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 918

Cho hình chữ nhật ABCD có E là trung điểm của AB. Tia DE cắt AC ở F, cắt CB ở G. Chọn câu đúng.

A. FD2 = FE.FG

Đáp án chính xác

B. 2FD = FE.FG

C. FD.FE = FG2

D. Cả A, B, C đều sai

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Ta có AB // CD (vì ABCD là hình chữ nhật)

Áp dụng định lý Talet ta có: EFFD=AEDC

Vì E là trung điểm của AB nên AE = EB = 12AB = 12CD

EFFD=AEDC=12(1)

=> FD = 2EF

Xét 2 tam giác vuông ΔAED và ΔBEG ta có:

DAE^=GBE^=90°

AE = EB (gt)

AED^=BEG^ (2 góc đối đỉnh bằng nhau)

=> ΔAED = ΔBEG (g - c - g)

=> ED = EG (các cạnh tương ứng)

Ta thấy:

FDFG=2EFFE+EG=2EFEF+EF+FD=2EFEF+EF+2EF=2EF4EF=122

Từ (1) và (2) ta có: EFFD=FDFG FD2 = EF.FG

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔA’B’C’ ~ ΔABC có chu vi lần lượt là 50cm và 60cm. Diện tích của ΔABC lớn hơn diện tích của ΔA’B’C’ là 33cm2. Tính diện tích tam giác ABC.

Xem đáp án » 14/03/2022 996

Câu 2:

Cho ΔA’B’C’ ~ ΔABC. Biết SABC=2549SABC và hiệu 2 chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác?

Xem đáp án » 14/03/2022 768

Câu 3:

Cho ΔABC vuông tại A, đường cao AH. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Tam giác AIK đồng dạng với tam giác nào dưới đây?

Xem đáp án » 14/03/2022 605

Câu 4:

Cho tam giác MNP vuông ở M và có đường cao MK.

Xem đáp án » 14/03/2022 530

Câu 5:

Một người đo chiều cao của cây nhờ 1 cọc chôn xuống đất, cọc cao 2,45 m và đặt xa cây 1,36m. Sau khi người ấy lùi ra xa cách cọc 0,64m thì người ấy nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng, Hỏi cây cao bao nhiêu? Biết khoảng cách từ chân đến mắt người ấy là 1,65m.

Xem đáp án » 14/03/2022 447

Câu 6:

Cho hình bình hành ABCD, điểm F nằm trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn câu đúng nhất.

Xem đáp án » 14/03/2022 437

Câu 7:

Cho đoạn AC vuông góc với CE. Nối A với trung điểm D của CE và E với trung điểm B của AC, AD và EB cắt nhau tại F. Cho BC = CD = 15cm. Tính diện tích tam giác DEF theo đơn vị cm2?

Xem đáp án » 14/03/2022 395

Câu 8:

Tỉ số các cạnh bé nhất  của 2 tam giác đồng dạng bằng 25. Tính chu vi p, p’ của 2 tam giác đó, biết p’ - p = 18?

Xem đáp án » 14/03/2022 366

Câu 9:

Tìm y trong hình vẽ dưới đây.

Xem đáp án » 14/03/2022 339

Câu 10:

Cho biết ABCD là hình chữ nhật. Tìm x.

Xem đáp án » 14/03/2022 332

LÝ THUYẾT

1. Định lí Ta- let trong tam giác

1.1. Tỉ số của hai đường thẳng

- Định nghĩa

Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

Tỉ số của hai đoạn thẳng AB và CD được kí hiệu là ABCD.

- Chú ý: Tỉ số của hai đoạn thẳng không phụ thuộc vào cách chọn đơn vị đo

Ví dụ 1.

- Cho  AB = 10 cm; CD = 30 cm thì ABCD=1030=13.

- Cho AB = 1 dm; CD = 3 dm thì ABCD=13.

1.2. Đoạn thẳng tỉ lệ

- Định nghĩa:

Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A’B’ và C’D’ nếu có tỉ lệ thức ABCD=A'B'C'D' hay ABA'B'=CDC'D' .

1.3. Định lý Ta – lét trong tam giác

- Định lý Ta – lét:

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lai thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)                                                     

Tổng quát :ΔABC,B'C'//BC;B'AB,C'AC

Ta có:AB'AB=AC'AC;AB'BB'=AC'C'C;BB'AB=CC'AC

Ví dụ 2. Tính độ dài cạnh AN trong hình vẽ sau, biết MN// BC

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Lời giải:

Ta có MN// BC, áp dụng định lý Ta – lét ta có:

 AMMB=ANNC hay 1710=x9

x=17.910=15,3

Vậy AN = 15,3.

2. Định lí đảo và hệ quả của định lí Ta – lét

2.1. Định lý đảo

- Nếu một đường thẳng cắt hai cạnh một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ví dụ 3. Trong tam giác ABC có AB = 10cm; AC = 15cm. Lấy trên cạnh AB điểm B’, trên cạnh AC lấy điểm  C’ sao cho AB’ = 4cm; AC’ = 6cm. Chứng minh B’C’// BC.

Lời giải:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ta có: B’B = AB – AB’ = 10 – 4 = 6cm,

Và CC’ = AC – AC’ = 15 – 6 = 9 cm

Ta có:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Theo định lí ta – lét đảo, suy ra: B’C’ // BC.

2.2. Hệ quả của định lý Ta – lét

- Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.


Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

- Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng song song với một cạnh và cắt phần kéo dài của hai cạnh còn lại.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ví dụ 4. Trong tam giác ABC có AB = 6cm và B’C’// BC . Lấy trên cạnh AB điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4cm; AC’ = 3cm. Tính độ dài cạnh AC.

Lời giải:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Áp dụng hệ quả trên ta có:

AB'AB=AC'AC=B'C'BC.

Khi đó ta có:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

3. Tính chất đường phân giác của tam giác

3.1. Định lý

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

 

Ví dụ 5. Cho tam giác ABC có AD là đường phân giác của góc  BAC^ sao cho DB = 4cm, AB = 6cm; AC = 8cm. Tính độ dài cạnh DC.

Lời giải:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Áp dụng định lí trên ta có:

DBDC=ABAC

Hay 4DC  =68DC  =4.86  =163  cm

3.2. Chú ý

Định lí vẫn đúng với đường phân giác của góc ngoài của tam giác

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Nếu AE’ là phân giác của góc BAx^

Ta có: ABAC=D'BD'C .

4. Khái niệm tam giác đồng dạng

4.1.Tam giác đồng dạng

a) Định nghĩa

Tam giác A’B’C’ gọi là đồng dạng với tam giác ABC nếu:

A^=A'^;B^=B'^;C^=C'^ và A'B'AB=A'C'AC=B'C'BC

Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là ∆A’B’C’ ~∆ ABC.

Tỉ số các cạnh tương ứng A'B'AB=A'C'AC=B'C'BC=k  được gọi là tỉ số đồng dạng

b) Tính chất

Các tính chất của hai tam giác đồng dạng:

Tính chất 1. Mỗi tam giác đồng dạng với chính nó.

Tính chất 2. Nếu  ∆ABC~ ∆ A’B’C’   thì  ∆A’B’C’~ ∆ ABC.

Tính chất 3. Nếu  ∆A’B’C’ ~∆ A”B”C”  và ∆A”B”C~ ∆ ABC thì ∆A’B’C’ ~∆ ABC.

Ví dụ 6. Cho ∆A’B’C’~ ∆ ABC như hình vẽ. Tính tỉ số đồng dạng ?

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Lời giải:

Ta có ∆A’B’C’~ ∆ ABC. Khi đó tỉ số đồng dạng là

A'B'AB=A'C'AC=B'C'BC=24=2,55=36=12.

4.2. Định lý

Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác đồng dạng với tam giác đã cho.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

- Chú ý: Định lí cũng đúng cho trường hợp đường thẳng d cắt phần kéo dài của hai tam giác song song với cạnh còn lại.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

 

5. Trường hợp đồng dạng thứ nhất.

5.1. Định lí

- Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

- Ví dụ 7.  Cho ∆ABC và ∆A’B’C’ có độ dài các cạnh như hình vẽ.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Ta có:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Do đó, ∆A’B’C’ ~∆ ABC.

6. Trường hợp đồng dạng thứ hai

6.1. Định lí.

- Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

- Ví dụ 8. Cho tam giác ABC có AB = 15cm; AC = 20cm. Trên hai cạnh AB, AC lần lượt lấy 2 điểm E, D sao cho AD = 8cm; AE = 6cm.

Chứng minh ∆AED ~∆ ABC.

Lời giải:

 

            Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Xét ∆AED và ∆ABC có:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)  .

Suy ra: ∆AED~ ∆ ABC.

7. Trường hợp đồng dạng thứ ba

7.1. Định lí

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

- Ví dụ 9. Cho tam giác ABC và các đường cao BH, CK. Chứng minh ∆ABH ~∆ ACK.  

Lời giải:

   Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Xét ∆ABH và ∆ACK có:

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Suy ra: ∆ABH ~∆ ACK.

8. Các trường hợp đồng dạng của tam giác vuông

8.1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông

Hai tam giác vuông đồng dạng với nhau nếu:

+ Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

+ Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

8.2. Dấu hiệu đặc biệt nhận biết hai tam vuông đồng dạng

- Định lý 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau 

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

8.3. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng

- Định lý 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.

Cho hai tam giác ABC và A’B’C’ với tỉ số đồng dạng là k=  A'B'AB, hai đường cao tương ứng là AH và A’H’.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

Khi đó, ta có tỉ số hai đường cao là : hΔA'B'C'hΔABC=k.

- Định lý 3: Tỉ số diện tích hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.

Ôn tập chương 3 (Câu hỏi - Bài tập) (ảnh 1)

 
Ví dụ 10. Cho tam giác ABC đồng dạng với tam giác MNP theo tỉ số k=  23 . Biết đường cao xuất phát từ A của tam giác ABC là AH = 12cm. Tính đường cao xuất phát từ M của tam giác MNP?

Lời giải:

Gọi đường cao xuất phát từ M của tam giác MNP là MK.

Vì tam giác ABC đồng dạng với tam giác MNP theo tỉ số k=  23 nên AHMK   =k12MK  =23  MK=  12.32  =  18

Vậy MK = 18 cm.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »