Quy đồng mẫu thức các phân thức sau 75x ; 4x-2y
MTC: 5x(x – 2y);
NTP 1: x – 2y;
NTP2: 5x
Quy đồng:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
Quy đồng mẫu thức các phân thức sau x+1x-x2,x+22-4x+2x2
Quy đồng mẫu thức các phân thức sau xx3-1,x+1x2-x,x-1x2+x+1
Quy đồng mẫu thức các phân thức sau 3+2x10x4y,58x2y2,23xy3
Quy đồng mẫu thức các phân thức sau xx3-27,x+2x2-6x+9,x-1x2+3x+9
Quy đồng mẫu thức các phân thức sau 7x-12x2+6x,5-3xx2-9
Quy đồng mẫu thức các phân thức sau 4x2-3x+5x3-1;2xx2+x+1
Quy đồng mẫu thức các phân thức sau 11102x4y,334xy3
Quy đồng mẫu thức các phân thức sau 4xx2+4x+4;32x+4
Mẫu chung của hai phân thức 4x-42x(x+3), x-33x(x+1) là
Rút gọn rồi quy đồng mẫu thức phân thức sau x2-5x+6x2-4;x2-4x-5x2+4x+3
Quy đồng mẫu thức các phân thức (có thể đổi dấu để tìm MTC cho thuận tiện). x-12x+2,x+12x-2,11-x2
Quy đồng mẫu thức các phân thức sau 2x+1x2-4ax+4a2,x+2ax2-2ax
Quy đồng mẫu thức các phân thức sau: 2514x2y,1421xy3
Mẫu chung của hai phân thức 7x-12x2+6x,5-3xx2-9 là
Quy đồng mẫu thức các phân thức sau x+1x4-2x2;xx4-4x2+4
Một chiếc khăn trải bàn có dạng hình chữ nhật ABCD được thêu một hoạ tiết có dạng hình thoi MNPQ ở giữa với MP = x (cm), NQ = y (cm) (x > y > 0) như Hình 5.
Viết đa thức biểu thị diện tích phần còn lại của chiếc khăn trải bàn đó.
Phân tích mỗi đa thức sau thành nhân tử:
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\);
b) x2 – x – y2 + y;
c) x3 + 2x2 + x – 16xy2.
Tính giá trị của mỗi biểu thức sau:
a) A = 16x2 ‒ 8xy + y2 ‒ 21 biết 4x = y + 1;
b) B = 25x2 + 60xy + 36y2 + 22 biết 6y = 2 ‒ 5x;
c) C = 27x3 – 27x2y + 9xy2 – y3 – 121 biết 3x = 7 + y.
Thực hiện phép tính:
a) \(7{x^2}{y^5} - \frac{7}{3}{y^2}\left( {3{x^2}{y^3} + 1} \right)\);
b) \(\frac{1}{2}x\left( {{x^2} + {y^2}} \right) - \frac{3}{2}{y^2}\left( {x + 1} \right) - \frac{1}{{\sqrt 4 }}{x^3}\);
c) (x + y)(x2 + y2 + 3xy) ‒ x3 ‒ y3;
d) (‒132xn + 1y10zn + 2 + 143xn + 2y12zn) : (11xny9zn) với n là số tự nhiên.
Cho hai đa thức: M = 23x23y ‒ 22xy23 + 21y ‒ 1 và N = ‒22xy3 ‒ 42y ‒ 1.
a) Tính giá trị của mỗi đa thức M, N tại x = 0; y = –2.
b) Tính M + N; M – N.
c) Tìm đa thức P sao cho M – N – P = 63y + 1.
a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right)\left( {\frac{2}{5}{x^3}{y^4}} \right)\);
b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\).