Cho \[\Delta ABC\] vuông tại A. Tia phân giác của góc B cắt AC tại E. Hãy chọn đáp án đúng.
Đáp án đúng là: C
\[\widehat {BEC}\] là góc ngoài của đỉnh E của \[\Delta AEB\] nên
\[\widehat {BEC} = \widehat A + \widehat {ABE} = 90^\circ + \widehat {EBA}\]
⇒ \[\widehat {BEC} > \widehat {EBA}\] Do đó, D sai
Và \[\widehat {BEC} > 90^\circ \]
⇒ Tam giác BEC là tam giác tù. (C đúng; A, B sai)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho \[\Delta ABC\] có \[\widehat A = 30^\circ \], \[\widehat B - \widehat C = 30^\circ \]. Tam giác ABC là
Cho \[\Delta ABC\] có \[\widehat A = 60^\circ \], \[\widehat B = \frac{1}{3}\widehat C\]. Số đo góc B là
Cho \[\Delta ABC\] có \[\widehat A = 50^\circ \], \[\widehat B = 70^\circ \]. Tia phân giác của góc C cắt cạnh AB tại M. Tính số đo các góc AMC, BMC.
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Biết \(\widehat {ABC} = 60^\circ \). Số đo góc BDC là
Cho tam giác ABC, khi đó \(\widehat A + \widehat B + \widehat C\) bằng
Cho \[\Delta ABC\] có \[\widehat A + \widehat C = 90^\circ \]. Khi đó \[\Delta ABC\] là
Cho \[\Delta ABC\] có \[\widehat A = 100^\circ \], \[\widehat B - \widehat C = 40^\circ \]. Số đo góc B và C lần lượt là