Cho hàm số f(x) = 3x – 2 có đồ thị (C). Điểm nào sau đây thuộc đồ thị hàm số (C).
A. M (0; 1)
B. N (2; 3)
C. P (−2; −8)
D. Q (−2; 0)
Lần lượt thay tọa độ các điểm M, N, P, Q vào hàm số f(x) = 3x – 2 ta được:
+) Với M (0; 1); thay x = 0; y = 1 ta được 1 = 3.0 – 2 <=> 1 = −2 (vô lý) nên M (C)
+) Với N (2; 3), thay x =2; y = 3 ta được 3 = 3.2 – 2 <=>3 = 4 (vô lý) nên N (C)
+) Với P (−2; −8), thay x = −2; y = −8 ta được −8 = 3. (−2) – 2 <=>−8 = −8 (luôn đúng) nên P thuộc (C)
+ ) Với Q (−2; 0), thay x = −2; y = 0 ta được 0 = 3. (−2) – 2 <=>0 = −8 (vô lý) nên Q không thuộc (C)
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số và g(x) = 5x – 4. Có bao nhiêu giá trị của a để f(a) = g(a)
1. Khái niệm hàm số
• Nếu đại lượng y phụ thuộc vào một đại lượng x thay đổi sao cho mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số
• Hàm số có thể được cho bằng bảng hoặc bằng công thức, ...
Ví dụ 1.
+) y là hàm số của x được cho dưới dạng bảng:
x |
− 1 |
0 |
1 |
2 |
y |
3 |
0 |
− 3 |
− 6 |
+) y là hàm số của x được cho dưới dạng công thức:; y = x + 2; y = 5x.
• Hàm số thường được ký hiệu bởi những chữ f, g, h, ... chẳng hạn khi y là hàm số của biến số x, ta viết y = f(x) hoặc y = g(x), ….
• f(a) là giá trị của hàm số y = f(x) tại x = a. Khi hàm số y được cho bởi công thức y = f(x), muốn tính giá trị f(a) của hàm số tại x = a, ta thay x = a vào biểu thức f(x) rồi thực hiện các phép tính trong biểu thức.
Ví dụ 2. Ta có hàm số y = f(x) = 2x + 1.
Khi đó, f(2) = 2 . 2 + 1 = 5.
• Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là một hàm hằng.
Ví dụ 3. Ta có y = f(x) = 3.
Khi đó với giá trị nào của x thì y = 3.
Vậy y là hàm hằng.
2. Đồ thị của hàm số
Tập hợp các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng tọa độ được gọi là đồ thị của hàm số y = f(x).
Ví dụ 4. Cho đồ thị của hàm số y = f(x) = 2x.
Các cặp giá trị tương ứng trên mặt phẳng tọa độ là O(0; 0); A(1; 2).
3. Hàm số đồng biến, nghịch biến
Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc .
• Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là hàm số đồng biến trên R (gọi tắt là hàm số đồng biến).
• Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng giảm đi thì hàm số y = f(x) được gọi là hàm số nghịch biến trên R (gọi tắt là hàm số nghịch biến).
Nói cách khác, cho hàm số y = f(x) xác định trên tập số thực R. Với ta có:
+ Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số đồng biến.
+ Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số nghịch biến.
Ví dụ 5. Cho hàm số y = x – 5, xác định với .
Ta có: x1 < x2 x1 – 5 < x2 – 5.
Hay f(x1) < f(x2) nên hàm số y = x – 5 đồng biến trên .