Bằng cách tìm giao điểm của hai đường thẳng d: 4x + 2y = −5 và d’: 2x – y = −1 ta tìm được nghiệm của hệ phương trình là . Tính
A.
B.
C.
D.
Đáp án A
Ta có d: 4x + 2y = −5 và d’: 2x – y = −1 y = 2x + 1
Xét phương trình hoành độ giao điểm của d và d’:
Vậy tọa độ giao điểm của d và d’ là
Suy ra nghiệm của hệ phương trình là
Từ đó
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hệ phương trình . Tìm các giá trị của tham số m để hệ phương trình nhận cặp số (−1; 3) làm nghiệm
Bằng cách tìm giao điểm của hai đường thẳng d: −2x + y = 3 và d’: x + y = 5, ta tìm được nghiệm của hệ phương trình là . Tính
Cho hệ phương trình: . Xác định các giá trị của tham số m để hệ phương trình vô nghiệm
Cho hệ phương trình: . Xác định các giá trị của tham số m để hệ phương trình vô số nghiệm
1. Khái niệm về hệ hai phương trình bậc nhất hai ẩn
Cho hai phương trình bậc nhất hai ẩn là ax + by = c và a'x + b'y = c'. Khi đó ta có hệ phương trình bậc nhất hai ẩn là:
Ví dụ 1:
; là các hệ hai phương trình bậc nhất hai ẩn.
+ Nếu hai phương trình có nghiệm chung là (x0; y0) thì (x0; y0) được gọi là một nghiệm của hệ phương trình (I).
+ Nếu hai phương trình không có nghiệm chung thì hệ phương trình (I) vô nghiệm.
+ Giải hệ phương trình là tìm tất cả các nghiệm của nó.
2. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn
Cho hai phương trình bậc nhất hai ẩn là ax + by = c và a'x + b'y = c'. Khi đó ta có hệ phương trình bậc nhất hai ẩn là:
Gọi (d) và (d') là đồ thị hàm số của 2 hàm số rút ra từ 2 phương trình bậc nhất hai ẩn của (I).
Đối với hệ phương trình (I), ta có:
Nếu (d) cắt (d') thì hệ (I) có một nghiệm duy nhất.
Nếu (d) song song với (d') thì hệ (I) vô nghiệm.
Nếu (d) trùng với (d') thì hệ (I) có vô số nghiệm.
Ví dụ 2: Xét hệ phương trình
Ta có: x – y = 0 (d)
x + y = 0 (d’)
Vẽ hai đường thẳng (d) và (d’) lên hệ trục tọa độ ta được:
Ta thấy (d) và (d’) cắt nhau tại O(0; 0) nên (0; 0) là nghiệm của hệ phương trình.
Chú ý: Với trường hợp
Hệ phương trình có nghiệm duy nhất ;
Hệ phương trình vô nghiệm ;
Hệ phương trình vô số nghiệm .
3. Hệ phương trình tương đương
Định nghĩa: Hệ hai phương trình được gọi là tương đương với nhau nếu chúng có cùng một tập nghiệm.
Ta cũng dùng kí hiệu “” để chỉ sự tương đương của hai phương trình.