Cho đồ thị hàm số y = và y = 3. Tìm giao điểm của hai đồ thị hàm số đã cho?
A. O(0; 0)
B. A(1; 1)
C. O(0; 0) và A(1; 1)
D. O(0; 0) và B( 1; 3)
Đáp án A
Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:
x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0
Với x = 0 thì y= 02 = 0
Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tọa độ giao điểm của đồ thị hàm số y = với đường thẳng y = 4x - 3 là?
Số giao điểm của đồ thị hàm số y = 4 với đường thẳng y = 4x - 3
Cho đồ thị hàm số y = 3. Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?
Trên mặt phẳng tọa độ cho điểm A( 1; 2) thuộc đồ thị hàm số y = a (a ≠ 0).
Hỏi điểm nào thuộc đồ thị hàm số ?
Biết đồ thị hàm số y = a (a ≠ 0) đi qua điểm A(1; a). Hỏi có bao nhiêu giá trị của a thỏa mãn?
Cho đồ thị của các hàm số sau:
(1): y = - 2
(2): y =
(3): y = -3
(4): y = -10
Hỏi có bao nhiêu đồ thị hàm số nằm phía dưới trục hoành?
Cho y = a (a0) đồ thị hàm số . Với giá trị nào của a thì đồ thị của hàm số đã cho nằm phía trên trục hoành.
Cho đồ thị hàm số y = -2. Tìm các điểm thuộc đồ thị hàm số đã cho có tung độ - 8.
1. Đồ thị của hàm số
Định nghĩa: Đồ thị của hàm số là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parabol đỉnh O (với O là gốc tọa độ).
Tính chất:
+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.
2. Cách vẽ đồ thị hàm số
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.
Bước 3: Vẽ đồ thị và kết luận.
Chú ý: Vì đồ thị hàm số y = ax2 (a ≠ 0) luôn đi qua gốc tọa độ O và nhận trục Oy làm trục đối xứng nên khi vẽ đồ thị của hàm số này, ta chỉ cần tìm một số điểm bên phải trục Oy rồi lấy các điểm đối xứng với chúng qua Oy.