Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 293

Một phân xưởng đặt kế hoạch sản xuất 200 sản phẩm. Trong 5 ngày đầu do còn làm việc khác nên mỗi ngày phân xưởng sản xuất ít hơn mức đề ra là 4 sản phẩm. Trong những ngày còn lại, xưởng sản xuất vượt mức 10 sản phẩm mỗi ngày nên hoàn thành kế hoạch sớm hơn 1 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng cần sản xuất bao nhiêu sản phẩm?

A. 30 sản phẩm

B. 25 sản phẩm

C. 22 sản phẩm

D. 20 sản phẩm

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Gọi năng suất làm việc theo dự kiến của xí nghiệp là x(sản phẩm/ngày), (x > 4)

+) Theo dự kiến: Mỗi ngày phân xưởng sản xuất x sản phẩm, tổng sản phẩm là 200 sản phẩm và thời gian sản xuất là 200x ngày

+ Thực tế: 5 ngày đầu phân xưởng sản xuất x – 4 (sản phẩm/ngày), số sản phẩm sản xuất được là 5 (x – 4). Những ngày sau mỗi ngày phân xưởng sản xuất x + 10 (sản phẩm/ngày), số sản phẩm sản xuất được là 220 – 5x với thời gian sản xuất là 220-5xx+10 (ngày)

*) Vì thực tế xí nghiệp đã hoàn thành công việc sớm hơn 1 ngày so với dự định nên ta có phương trình:

Vậy theo dự kiến mỗi ngày phân xưởng sản xuất 20 sản phẩm

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một người dự định đi xe đạp từ A đến B cách nhau 36km trong thời gian đã định. Sau khi đi được nửa quãng đường, người đó dừng lại nghỉ 30 phút. Vì vậy mặc dù trên quãng đường còn lại đã tăng tốc thêm 2km/h song vẫn đến B chậm hơn dự kiến 12 phút. Vậy vận tốc của người đi xe đạp trên đoạn đường cuối của đoạn AB?

Xem đáp án » 14/08/2022 1,678

Câu 2:

Tìm m để phương trình 3x2 + 4(m – 1)x + m2 – 4m + 1 = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn:  

Xem đáp án » 14/08/2022 869

Câu 3:

Cho phương trình 2x2 + 2mx + m2 – 2 = 0, với m là tham số. Gọi x1; x2 là hai nghiệm của phương trình. Tìm hệ thức liên hệ giữa x1; x2 không phụ thuộc vào m.

Xem đáp án » 14/08/2022 854

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2x – y – a2 = 0 và parabol (P): y = ax2 (a > 0). Tìm a để (d) cắt (P) tại hai điểm phân biệt A, B. Khi đó có kết luận gì về vị trí của hai điểm A, B

Xem đáp án » 14/08/2022 745

Câu 5:

Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1. Gọi A (x1; y1) và B (x2; y2) là các giao điểm của (d) và (P). Tìm m để biểu thức M = (y1 − 1)(y2 − 1) đạt giá trị lớn nhất.

Xem đáp án » 14/08/2022 668

Câu 6:

Tìm các giá trị của m để phương trình x2 – mx + m2 – m – 3 = 0 có hai nghiệm x1; x2 là độ dài các cạnh góc vuông của tam giác ABC tại A biết độ dài cạnh huyền BC = 2

Xem đáp án » 14/08/2022 494

Câu 7:

Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = -x22. Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?

Xem đáp án » 14/08/2022 478

Câu 8:

Phân tích đa thức f(x) = x4 – 2mx2 – x + m2 – m thành tích của hai tam thức bậc hai ẩn x.

Xem đáp án » 14/08/2022 457

Câu 9:

Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = x2 tại hai điểm phân biệt M và N sao cho MN = 210

Xem đáp án » 14/08/2022 383

Câu 10:

Một ô tô đi từ tỉnh A đến tỉnh B cách nhau 120km. Cùng lúc đó có một xe máy chạy từ B trở về A và gặp xe ô tô C cách một trong hai điểm khởi hành 75km. Tính vận tốc của mỗi xe, biết rằng nếu vận tốc của hai xe không đổi và xe máy khởi hành trước ô tô 48 phút thì sẽ gặp nhau ở giữa quãng đường.

Xem đáp án » 14/08/2022 371

Câu 11:

Một công nhân được giao làm một số sản phẩm trong thời gian nhất định. Khi còn làm nốt 30 sản phẩm cuối cùng người đó thấy nếu cứ giữ nguyên năng suất thì sẽ chậm 30 phút. Nếu tăng năng suất thêm 55 sản phẩm một giờ thì sẽ xong sớm hơn dự định là 30 phút. Tính năng suất của người thợ lúc đầu.

Xem đáp án » 14/08/2022 359

Câu 12:

Cho phương trình x2 – 4x = 2|x – 2| − m – 5, với m là tham số. Xác định m để phương trình có bốn nghiệm phân biệt

Xem đáp án » 14/08/2022 331

Câu 13:

Cho phương trình x2 – (2m + 1)x + m2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m  để phương trình có hai nghiệm phân biệt x1; x2 sao cho biểu thức P=x1x2x1+x2 có giá trị là số nguyên

Xem đáp án » 14/08/2022 328

Câu 14:

Cho phương trình x2 – (m – 1)x – m2 + m – 2 = 0, với m là tham số. Gọi hai nghiệm của phương trình đã cho là x1; x2. Tìm m để biểu thức A=x1x23x2x13 đạt giá trị lớn nhất

Xem đáp án » 14/08/2022 298

Câu 15:

Cho phương trình x4 – mx3 + (m + 1)x2 – m(m + 1)x + (m+1)2 = 0

Xem đáp án » 14/08/2022 292

LÝ THUYẾT

1. Hàm số y = ax2  (a0)

a) Tập xác định

Cho hàm số y=ax2  (a0) 

Tập xác định của hàm số là R.

b) Tính chất

+ Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0.

+ Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0.

c) Đồ thị hàm số  y=ax2  (a0)

Đồ thị của hàm số y=ax2  (a0) là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parabol đỉnh O (với O là gốc tọa độ).

Tính chất của đồ thị:

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) (ảnh 1)

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) (ảnh 1)
Các bước vẽ đồ thị hàm số  y=ax2  (a0)

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.

Bước 3: Vẽ đồ thị và kết luận.

2. Phương trình bậc hai một ẩn

a) Định nghĩa: Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng

                   ax2+bx+c=0

trong đó x là ẩn, a, b, c là những số cho trước gọi là các hệ số và a0.

b) Biệt thức

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) ta có biệt thức Δ như sau:

Δ = b2 - 4ac

Ta sửa dụng biết thức Δ để giải phương trình bậc hai.

c) Công thức nghiệm của phương trình bậc hai

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac

+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt là x1=b+Δ2a;x2=bΔ2a 

+ Nếu Δ = 0 thì phương trình có nghiệm kép là x1=x2=b2a 

+ Nếu Δ < 0 thì phương trình vô nghiệm.

d) Biệt thức '

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b’ ta có biệt thức ' như sau:

' = b’2 - ac

Ta sửa dụng biết thức ' để giải phương trình bậc hai.

e) Công thức nghiệm thu gọn của phương trình bậc hai

Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) có b = 2b’ và biệt thức ' = b’2 - ac

+ Nếu ' > 0 thì phương trình có hai nghiệm phân biệt là x1=b'+Δ'a;x2=b'Δ'a 

+ Nếu ' = 0 thì phương trình có nghiệm kép là

x1=x2=b'a

+ Nếu ' < 0 thì phương trình vô nghiệm.

3. Hệ thức Vi – ét

a) Hệ thức Vi – ét

Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có:

x1+x2=bax1.x2=ca 

b) Ứng dụng của hệ thức Vi - ét

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2=ca

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có một nghiệm là x1 = -1 và nghiệm còn lại là x2=-ca

+ Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình bậc hai x2 - Sx + P = 0

+ Điều kiện để có hai số đó là S2 - 4P ≥ 0

 

 

Câu hỏi mới nhất

Xem thêm »
Xem thêm »