Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

16/07/2024 1,045

Chọn kết luận đúng về giá trị biểu thức B=cos2α-3sin2α3-sin2α biết tanα=3

A. B > 0

B. B < 0

Đáp án chính xác

C. 0 < B < 1

D. B = 1

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giá trị biểu thức B = tan 10o. tan 20o. tan 30o……. tan 80o

Xem đáp án » 14/08/2022 5,852

Câu 2:

Tính sinα, tanα biết cosα=34

Xem đáp án » 14/08/2022 4,930

Câu 3:

Cho tanα= 2. Tính giá trị của biểu thức G=2sinα+cosαcosα-3sinα

Xem đáp án » 14/08/2022 3,954

Câu 4:

Cho α là góc nhọn bất kỳ. Khi đó C=sin6α+cos6α+3sin2α.cos2α bằng

Xem đáp án » 14/08/2022 3,071

Câu 5:

Tính giá trị của các biểu thức sau: A = sin215o + sin225o + sin235o + sin245o + sin255o + sin265o + sin275o

Xem đáp án » 14/08/2022 2,469

Câu 6:

Giá trị của biểu thức P = cos220o + cos240o + cos250o + cos270o

Xem đáp án » 14/08/2022 1,710

Câu 7:

Cho tam giác ABC cân tại A có AB = AC = 13cm; BC = 10cm. Tính sin A

Xem đáp án » 14/08/2022 1,474

Câu 8:

Cho α là góc nhọn bất kỳ. Rút gọn P=1-sin2α.cot2α+1-cot2α ta được

Xem đáp án » 14/08/2022 1,446

Câu 9:

Tính giá trị biểu thức sin210o + sin220o + … + sin270o + sin280o

Xem đáp án » 14/08/2022 1,288

Câu 10:

Cho α là góc nhọn. Tính cotα biết sinα=513

Xem đáp án » 14/08/2022 1,212

Câu 11:

Cho α là góc nhọn bất kỳ. Khi đó C = sin4 α+ cos4 α bằng

Xem đáp án » 14/08/2022 1,206

Câu 12:

Sắp xếp các tỉ số lượng giác tan 43o, cot 71o, tan 38o, cot 69o 15’, tan 28o theo thứ tự tăng dần

Xem đáp án » 14/08/2022 1,187

Câu 13:

Tính số đo góc nhọn α biết 10sin2α+6cos2α=8

Xem đáp án » 14/08/2022 1,006

Câu 14:

Sắp xếp các tỉ số lượng giác sin 40o, cos 67o, sin 35o, cos 44o 35’;  sin 28o 10’ theo thứ tự tăng dần.

Xem đáp án » 14/08/2022 979

Câu 15:

Cho tam giác ABC vuông tại A, đường cao AH có CH = 4cm, BH = 3cm. Tính tỉ số lượng giác cos C (làm tròn đến chữ số thập phân thứ 2)

Xem đáp án » 14/08/2022 908

LÝ THUYẾT

1. Khái niệm tỉ số lượng giác của một góc nhọn

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sin α.

+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu là cos α.

+ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tan α.

+ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu là cot α.

Ví dụ 1. Cho tam giác ABC có C^=α .

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Khi đó: sinα=ABBC; cosα=ACBCtanα=ABACcotα=ACAB 

Nhận xét: Nếu α là một góc nhọn thì:

0 < sin α < 1; 0 < cos α < 1; tan α > 0; cot α > 0.

Ví dụ 2. Cho tam giác ABC có C^=α

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Khi đó: 0<sinα=ABBC<1; 0<cosα=ACBC<1tanα=ABAC>0cotα=ACAB>0  

Chú ý: Nếu hai góc nhọn α và β có sin α = sin β (hoặc cos α = cos β, hoặc tan α = tan β, hoặc cot α = cot β) thì α = β vì chúng là hai góc tương ứng của hai tam giác vuông đồng dạng.

Ví dụ 3. Cho tam giác ABC có AB = AC, đường cao AH. MN là đường trung bình của tam giác ABH. Chứng minh AMN^=C^.

Lời giải:

Vì AH là đường cao của ∆ABC nên AHBC hay AHBH (1)

Mà MN là đường trung bình của ∆AMN nên:

+ AB = 2AM; AH = 2AN.

+ MN // BH (2)

Từ (1) và (2) suy ra  (tính chất từ vuông góc đến song song).

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Xét ∆AMN vuông tại N (vì MNBH) nên: sinAMN^=ANAM.

Xét ∆ACH vuông tại H nên: sinC^=AHAC=AHAB=2AN2AM=ANAM.

Ta thấy: sinAMN^=sinC^=ANAM.

Do đó AMN^=C^ (đpcm).

2. Tỉ số lượng giác của hai góc phụ nhau

Định lí. Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Ví dụ 4. Cho tam giác ABC vuông tại A có B^=α;  C^=β.

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Khi đó, α + β = 90° (trong tam giác vuông hai góc nhọn phụ nhau).

Ta có: sin α = cos β; cos α = sin β; tan α = cot β; cot α = tan β.

Bảng lượng giác của một số góc đặc biệt:

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Ví dụ 5. Cho tam giác ABC vuông tại A có BC = 16, C^=30o. Tính độ dài AB.

Lời giải:

Bài 2: Tỉ số lượng giác của góc nhọn (ảnh 1)

Xét ∆ABC vuông tại A, ta có: sinC^=ABBC.

Hay sin30o=AB16=12 .

Suy ra AB=162=8.

Vậy AB = 8 (đvđd).

Chú ý: Từ nay khi viết các tỉ số lượng giác của một góc nhọn trong tam giác, ta bỏ kí hiệu " ^ " đi.

Ví dụ 6. Góc A là góc nhọn thì ta viết sin A thay cho sinA^.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »