Cho ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH = 3cm; HB = 4cm. Hãy tính AB, AC, AM và diện tích tam giác ABC.
A.
B.
C.
D.
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có
+) Diện tích tam giác ABC với AH là đường cao ta có:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho ABC vuông tại A, AB = 12cm, AC = 16cm, tia phân giác AD, đường cao AH. Tính HD.
Cho tam giác ABC vuông tại A, AB = 15cm; AC = 20cm. Phân giác của góc A cắt BC tại E
Giải tam giác ABC
Cho tam giác ABC vuông tại A, = 35o và AB = 6cm. Vẽ đường cao AH và trung tuyến AM của tam giác ABC
Giải tam giác ABC
Sắp xếp theo thứ tự tăng dần: cot 70o, tan 33o, cot 55o, tan 28o, cot 40o
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 4,5cm
Tính các góc B, C và đường cao AH của tam giác?
Bạn An đang học vẽ hình bằng phần mềm máy tính. An vẽ hình một ngôi nhà với phần mái có dạng hình tam giác cân (hình vẽ bên). Biết góc tạo bởi phần mái và mặt phẳng nằm ngang là 30o, chiều dài mỗi bên dốc mái là 3,5m. Tính gần đúng bề rộng của mái nhà.
Cho MNP vuông tại M có đường cao MH. Gọi I, K lần lượt là hình chiếu vuông góc của H trên MN, MP. Biết HK = 9cm, HI = 6cm. Khi đó tính độ dài các cạnh của MNP
Cho tam giác ABC vuông tại A. Tính A = sin2B + sin2C – tan B. tan C
Cho hình thang cân ABCD (AB // CD); CD = 2AD = 2AB = 8. Tính diện tích của hình thang đó
1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
Định lí 1. Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.
Ví dụ 1. Tam giác ABC vuông tại A, đường cao AH.
Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.
Ta có: AB2 = BC . BH; AC2 = BC . HC.
2. Một số hệ thức liên quan tới đường cao
Định lí 2. Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền.
Ví dụ 2. Tam giác ABC vuông tại A, đường cao AH.
Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.
Ta có: AH2 = BH . HC.
Định lí 3. Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng.
Ví dụ 3. Tam giác ABC vuông tại A, đường cao AH.
Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.
Ta có: AB . AC = BC . AH.
Định lí 4. Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.
Ví dụ 4. Tam giác ABC vuông tại A, đường cao AH.
Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.
Ta có: .
3. Khái niệm tỉ số lượng giác của một góc nhọn
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sin α.
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu là cos α.
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tan α.
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu là cot α.
Ví dụ 1. Cho tam giác ABC có .
Khi đó: ; ; ;
Nhận xét: Nếu α là một góc nhọn thì:
0 < sin α < 1; 0 < cos α < 1; tan α > 0; cot α > 0.
Ví dụ 2. Cho tam giác ABC có
Khi đó: ; ; ;
Chú ý: Nếu hai góc nhọn α và β có sin α = sin β (hoặc cos α = cos β, hoặc tan α = tan β, hoặc cot α = cot β) thì α = β vì chúng là hai góc tương ứng của hai tam giác vuông đồng dạng.
Ví dụ 3. Cho tam giác ABC có AB = AC, đường cao AH. MN là đường trung bình của tam giác ABH. Chứng minh .
Lời giải:
Vì AH là đường cao của ∆ABC nên hay (1)
Mà MN là đường trung bình của ∆AMN nên:
+ AB = 2AM; AH = 2AN.
+ MN // BH (2)
Từ (1) và (2) suy ra (tính chất từ vuông góc đến song song).
Xét ∆AMN vuông tại N (vì ) nên: .
Xét ∆ACH vuông tại H nên: .
Ta thấy: .
Do đó (đpcm).
4. Tỉ số lượng giác của hai góc phụ nhau
Định lí. Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Ví dụ 4. Cho tam giác ABC vuông tại A có .
Khi đó, α + β = 90° (trong tam giác vuông hai góc nhọn phụ nhau).
Ta có: sin α = cos β; cos α = sin β; tan α = cot β; cot α = tan β.
Bảng lượng giác của một số góc đặc biệt:
Ví dụ 5. Cho tam giác ABC vuông tại A có BC = 16, . Tính độ dài AB.
Lời giải:
Xét ∆ABC vuông tại A, ta có: .
Hay .
Suy ra .
Vậy AB = 8 (đvđd).
Chú ý: Từ nay khi viết các tỉ số lượng giác của một góc nhọn trong tam giác, ta bỏ kí hiệu " ^ " đi.
Ví dụ 6. Góc A là góc nhọn thì ta viết sin A thay cho .
5. Các hệ thức trong tam giác vuông:
Định lí. Trong một tam giác vuông, mỗi cạnh góc vuông bằng:
+ Cạnh huyền nhân với sin góc đối hay nhân với côsin góc kề.
+ Cạnh góc vuông kia nhân với tan của góc đối hay nhân với côtang của góc kề.
Ví dụ. Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c.
Khi đó, a là độ dài cạnh huyền;
b và c là độ dài hai cạnh góc vuông.
Do đó: b = a.sin B = a.cos C; c = a.sin C = a.cos B;
b = c.tan B = c.cot C; c = b.tan C = b.cot C.