Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Chọn câu sai?
A. AH BC
B. OM // AH
C. HM =
D. OM BF
Xét (O) có = 90o; = 90o (góc nội tiếp chắn nửa đường tròn)
Suy ra CF AC; BF AB mà BD AC; CE AB
=> BD // CF; CE // BF
=> BHCF là hình bình hành.
Có M là trung điểm của BC nên M cũng là trung điểm của HF hay HM =
Khi đó OM là đường trung bình của tam giác AHF nên AH // OM
Xét tam giác ABC có BD và CE là hai đường cao cắt nhau tại H nên H là trực tâm tam giác ABC => AH BC mà AH // OM => OM BC
Đáp án D sai vì OM BC mà BC cắt BF nên OM không thể vuông với BF
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Khi đó:
Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 12cm, AC = 15cm, AH = 6cm. Tính đường kính của đường tròn (O)
Tam giác ABC nội tiếp đường tròn (O; R) biết góc = 45o và AB = a. Bán kính đường tròn (O) là:
Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Gọi N là giao điểm của AH với đường tròn (O). Tứ giác BCMN là hình gì?