Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài AB, CD với A, C thuộc (O),
Chứng minh rằng
Vẽ tiếp tuyến chung tại S lần lượt cắt AB, CD ở M, N. Theo tính chất tiếp tuyến ta có:
do đó:
Mặt khác OO' là trục đối xứng của hình nên C đối xứng với A qua OO', D đối xứng với B qua OO' nên do đó là hình thang.
M, N lần lượt là trung điểm của AB, CD nên MN là đường trung bình hình thang ABCD.
Từ (1) và (2) suy ra
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC
a) Chứng minh rằng: tứ giác BDCE là hình thoi
b) Gọi I là giao điểm của OC và đường tròn (O'). Chứng minh ba điểm D, A, I thẳng hàng
c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O')
Chứng tỏ rằng hệ phương trình có 1 nghiệm duy nhất với m = 3. Tìm nghiệm đó.
Cho vuông tại A (AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng:
a) cân
b) cân
c) HA là tiếp tuyến của (O)