IMG-LOGO

Câu hỏi:

16/07/2024 754

Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC

b) Chứng minh AB.AF = AC.AE

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét ΔABF và ΔACE có:

∠(BEA) = ∠(CFA) = 900 (gt)

∠(BAC ) chung

⇒ ΔABF ∼ ΔACE (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC

 

a) Chứng minh tứ giác BFEC nội tiếp được đường tròn

Xem đáp án » 16/08/2022 1,746

Câu 2:

Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC

c) Chứng minh tứ giác ABDC nội tiếp được đường tròn

Xem đáp án » 16/08/2022 438

Câu hỏi mới nhất

Xem thêm »
Xem thêm »