Ta có:
x2y2 – x2 + 2y2 – 2 = 0
x2(y2 – 1) + 2(y2 – 1) = 0
(y2 – 1).( x2 + 2) = 0
Vì x2 + 2 > 0 với mọi x
Do đó y2 – 1 = 0 = 1 hoặc y = –1
Vậy y {1; – 1} và x là một số thực tùy ý.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC. Ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ABD và ACE.
a) Chứng minh CD = BE và CD vuông góc với BE;
b) Lấy điểm K nằm trong tam giác ABD sao cho góc ABK bằng 300, BA = BK. Chứng minh: AK = KD.
Một giáo viên theo dõi thời gian giải bài toán (tính theo phút) của một lớp học và ghi lại:
10 |
5 |
4 |
7 |
7 |
7 |
4 |
7 |
9 |
10 |
6 |
8 |
6 |
10 |
8 |
9 |
6 |
8 |
7 |
7 |
9 |
7 |
8 |
8 |
6 |
8 |
6 |
6 |
8 |
7 |
a) Dấu hiệu cần tìm hiểu ở đây là gì?
b) Lập bảng tần số và tìm Mốt của dấu hiệu;
c) Tính thời gian trung bình của lớp.
Gọi M là trung điểm của BC trong tam giác ABC. AM gọi là đường gì của tam giác ABC ?
a) Rút gọn P(x), Q(x);
b) Chứng tỏ x = –1 là nghiệm của P(x), Q(x);