Lựa chọn đáp án đúng nhất:
Phân tích đa thức ab(a+b)−bc(b+c)+ca(a+c)+abc thành nhân tử, ta được:
A. (a+b+c)(ab+ac+bc)
B. (a+b+c)(ab+ac−bc)
C. (a+b+c)(a+b)
D. (a+b)(a+c)(b+c)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Lựa chọn đáp án đúng nhất:
Khẳng định dưới đây đúng hay sai:
Với x∈ℝ thì A=(x2+1)4+9(x2+1)3+21(x2+1)2−x2−31≤0
Lựa chọn đáp án đúng nhất:
Đa thức A=x3+4x2+5x+2 có giá trị bằng 0 thì:
Lựa chọn đáp án đúng nhất:
Phân tích đa thức x3−x2−14x+24 thành nhân tử, ta được:
Lựa chọn đáp án đúng nhất:
Phân tích đa thức (x+y)2+3(x+y)+2 thành nhân tử thì sẽ có một nhân tử là:
Lựa chọn đáp án đúng nhất:
Khẳng định dưới đây đúng hay sai:
Với x∈ℝ thì B=x4−4x3−2x2+12x+9 là bình phương một số nguyên.
Lựa chọn đáp án đúng nhất:
Phân tích đa thức x4+2x3+2x2+2x+1 thành nhân tử thì sẽ có một nhân tử là:
Điền vào ô trống trong kết quả phân tích đa thức thành nhân tử:
x3+5x2+8x+4=(…)×(…)2
Lựa chọn đáp án đúng nhất:
Đa thức A=x4+x2+2x có giá trị bằng 0 thì:
Điền kết quả vào ô trống:
Biết (x+2)(x+3)(x+4)(x+5)−24=0, giá trị [x=…x=…
Khái niệm: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Phương pháp: Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.
- Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.