Cho ∆ABC vuông tại A. Trên cạnh BC, lấy điểm D sao cho BD = BA = 5 cm. Đường thẳng vuông góc với BC tại D cắt AC tại H. Gọi E là giao điểm của DH và AB. Biết CD = 3 cm. Độ dài cạnh BE bằng
A. 3 cm;
B. 5 cm;
C. 8 cm;
D. 10 cm.
Đáp án đúng là: C
Xét ∆BAH và ∆BDH, có:
\[\widehat {BAH} = \widehat {BDH} = 90^\circ \].
BH là cạnh chung.
BA = BD (giả thiết).
Do đó ∆BAH = ∆BDH (cạnh huyền – cạnh góc vuông).
Ta suy ra AH = DH (cặp cạnh tương ứng).
Xét ∆AHE và ∆DHC, có:
\[\widehat {HAE} = \widehat {HDC} = 90^\circ \].
AH = DH (chứng minh trên).
\[\widehat {AHE} = \widehat {DHC}\] (2 góc đối đỉnh).
Do đó ∆AHE = ∆DHC (cạnh góc vuông – góc nhọn kề).
Ta suy ra AE = DC.
Ta có BA = BD (giả thiết) và AE = DC (chứng minh trên).
Suy ra BA + AE = BD + DC.
Do đó BE = BD + DC = 5 + 3 = 8 (cm).
Vậy ta chọn đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho ∆ABC có AI, BH, CK là các đường cao (I ∈ BC, K ∈ AB, H ∈ AC). Biết ∆ABH = ∆ACK. Kết luận nào sau đây đúng?
Cho ∆ABC vuông tại A có AB < AC, \[\widehat B = 60^\circ \]. Kẻ AH ⊥ BC (H ∈ BC). Gọi D là điểm trên cạnh AC sao cho AD = AB. Kẻ DE ⊥ BC (E ∈ BC) và DK ⊥ AH (K ∈ AH). Cho các khẳng định sau:
(I) BH = AK;
(II) HA = KD = HE.
Chọn phương án đúng:
Cho ∆ABC có M là trung điểm BC. Kẻ BE và CF lần lượt cùng vuông góc với AM ở E và F. Khi đó ta có BF song song với đường thẳng nào trong các đường thẳng sau đây.
Cho ∆ABC nhọn và ∆ABC = ∆DEF. Kẻ AH ⊥ BC (H ∈ BC) và DK ⊥ EF (K ∈ EF). Kết luận nào sau đây là đúng?
Cho ∆ABC vuông tại A và ∆MNP vuông tại M có AB = MN, CB = PN. Biết AC = 5 cm. Tính độ dài MP.
Cho ∆ABC vuông tại A, tia phân giác \[\widehat B\] cắt AC tại D. Kẻ DE ⊥ BC tại E. Gọi H là giao điểm của BD và AE. Đường thẳng BH vuông góc với đường thẳng nào trong các đường thẳng sau đây.