Chọn đáp án đúng. Trong các khẳng định sau đây, khẳng định nào đúng?
A. Số 0 không có căn bậc hai.
B. Số dương có đúng một căn bậc hai.
C. Số âm không có căn bậc hai.
D. Số âm có hai căn bậc hai.
Theo tính chất của căn bậc hai:
+ Số âm không có căn bậc hai
+ Số 0 chỉ có một căn bậc hai là 0
+ Số dương a có đúng hai căn bậc hai là:
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Chọn đáp án đúng. Trong các số: số nào là căn bậc hai số học của 0,16?
1. Căn bậc hai
a. Khái niệm: Căn bậc hai của một số a không âm là số x sao cho
Ví dụ 1. Số 16 là số không âm, căn bậc hai của 16 là số x sao cho
Do đó căn bậc hai của 16 là 4 và −4.
b. Tính chất:
- Số âm không có căn bậc hai.
- Số 0 có đúng một căn bậc hai đó chính là số 0, ta viết .
- Số dương a có đúng hai căn bậc hai là hai số đối nhau; số dương ký hiệu là , số âm ký hiệu là .
Ví dụ 2.
- Số −12 là số âm nên không có căn bậc hai.
- Số 64 có hai căn bậc hai là 8 và −8.
- Số 15 có hai căn bậc hai là và .
2. Căn bậc hai số học
a. Định nghĩa: Với số dương a, số được gọi là căn bậc hai số học của a. Số 0 cũng được gọi là căn bậc hai số học của 0.
Ví dụ 3. Căn bậc hai số học của 36 là (= 6).
- Căn bậc hai số học của 7 là .
Chú ý. Với a ≥ 0, ta có:
Nếu thì x ≥ 0 và
Nếu x ≥ 0 và thì .
- Ta viết
Ví dụ 4. Tìm căn bậc hai số học của các số sau đây: 25; 81; 225; 324.
Lời giải:
Ta có:
• vì 5 > 0 và
• vì 9 > 0 và
• vì 15 > 0 và ;
• vì 18 > 0 và
b. Phép khai phương:
- Phép khai phương là phép toán tìm căn bậc hai số học của số không âm (gọi tắt là khai phương).
- Khi biết một căn bậc hai số học của một số, ta dễ dàng xác định được các căn bậc hai của nó.
Ví dụ 5.
- Căn bậc hai số học của 9 là 3 nên 9 có hai căn bậc hai là 3 và −3.
- Căn bậc hai số học cuả 256 là 16 nên 256 có hai căn bậc hai là 16 và −16.
3. So sánh các căn bậc hai số học
Định lí. Với hai số a và b không âm, ta có: .
Ví dụ 6. So sánh:
a) 3 và ;
b) 5 và .
Lời giải:
a) Vì 9 < 11 nên .
Vậy .
b) Vì 25 > 15 nên .
Vậy .