Tìm tất cả giá trị thực của tham số mm để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 10x + 16 \le 0\,\,\,\left( 1 \right)}\\{mx \ge 3m + 1\,\,\,\left( 2 \right)}\end{array}} \right.\) vô nghiệm.
Bất phương trình \[\left( 1 \right) \Leftrightarrow - 8 \le x \le - 2.\] Suy ra\[{S_1} = \left[ { - 8; - 2} \right]\]
A.\[m >- \frac{1}{5}.\]
B. \[m >\frac{1}{4}.\]
C. \[m >- \frac{1}{{11}}.\]
D. \[m >\frac{1}{{32}}.\]
Với m = 0 thì bất phương trình (2) trở thành \[0x \ge 1\] vô nghiệm .
Với m >0 thì bất phương trình (2) tương đương với \[x \ge \frac{{3m + 1}}{m}\]
Suy ra \[{S_2} = \left[ {\frac{{3m + 1}}{m}; + \infty } \right)\]
Hệ vô nghiệm \[ \Leftrightarrow - 2 < \frac{{3m + 1}}{m} \Leftrightarrow - 2m < 3m + 1 \Leftrightarrow m >- \frac{1}{5}\]Kết hợp m >0 ta được m >0.</>
+) Với m < 0 thì bất phương trình (2) tương đương với \[x \le \frac{{3m + 1}}{m}\]
Suy ra \[{S_2} = \left( { - \infty ;\frac{{3m + 1}}{m}} \right]\]
Hệ vô nghiệm \[ \Leftrightarrow \frac{{3m + 1}}{m} < - 8 \Leftrightarrow 3m + 1 >- 8m \Leftrightarrow m >- \frac{1}{{11}}\]</>
Kết hợp với m < 0 ta được \[ - \frac{1}{{11}} < m < 0\]
Vậy \[m >- \frac{1}{{11}}\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\] có \[\Delta = {b^2} - 4ac < 0\]. Khi đó mệnh đề nào đúng?
Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình \[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2}\]?
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\]. Điều kiện để \[f\left( x \right) \le 0,\forall x \in R\;\] là
Bảng xét dấu nào sau đây là của tam thức \[f\left( x \right) = \;{x^2} + 12x + 36\]?
Với giá trị nào của m thì bất phương trình \[{x^2} - x + m \le 0\] vô nghiệm?
Tam thức bậc hai \[f\left( x \right) = 2{x^2} + 2x + 5\] nhận giá trị dương khi và chỉ khi
Tam thức bậc hai \[f\left( x \right) = {x^2} + \left( {1 - \sqrt 3 } \right)x - 8 - 5\sqrt 3 \]:
Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right).\] Điều kiện để f(x) >0\[,\forall x \in R\] là
Các giá trị m để tam thức \[f\left( x \right) = {x^2} - \left( {m + 2} \right)x + 8m + 1\;\] đổi dấu 2 lần là
Với giá trị nào của a thì bất phương trình \[a{x^2} - x + a \ge 0\;\] nghiệm đúng với \[\forall x \in \mathbb{R}\;\]?
Tìm tập xác định D của hàm số \[y = \sqrt {\frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}}} \] là
Cho tam thức bậc hai \[f\left( x \right) = {x^2} - bx + 3\]. Với giá trị nào của bb thì tam thức f(x) có hai nghiệm phân biệt?
Giá trị nào của m thì phương trình \[(m - 3){x^2} + (m + 3)x - (m + 1) = 0\;\left( 1 \right)\]có hai nghiệm phân biệt?