Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
A.980
B.51
C.981
D.1000
Ta có: \[\cot 20x = 1 \Leftrightarrow 20x = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{80}} + \frac{{k\pi }}{{20}}\,\,\left( {k \in \mathbb{Z}} \right)\]
Theo bài ra ta có:
\[\begin{array}{*{20}{l}}{x \in \left[ { - 50\pi ;0} \right]}\\{ \Leftrightarrow - 50\pi \le \frac{\pi }{{80}} + \frac{{k\pi }}{{20}} \le 0}\\{ \Leftrightarrow - 50 \le \frac{1}{{80}} + \frac{k}{{20}} \le 0}\\{ \Leftrightarrow - \frac{{4001}}{4} \le k \le - \frac{1}{4}}\\{ \Leftrightarrow - 1000,25 \le k \le - 0,25}\end{array}\]
Mà\[k \in \mathbb{Z} \Rightarrow - 1000 \le k \le - 1\]
\[ \Rightarrow k \in \left\{ { - 1000; - 999;....; - 2; - 1} \right\}\]
Tập trên có \[ - 1 - ( - 1000) + 1 = 1000\]phần tử suy ra có 1000 giá trị nguyên của kk thỏa mãn.
Vậy phương trình đã cho có 1000 nghiệm thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Phương trình \[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0\]có nghiệm là:
Tìm tập xác định D của hàm số sau \[y = \frac{{2\sin x - 1}}{{\tan 2x + \sqrt 3 }}\].
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]
Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là:
Giải phương trình lượng giác \[\sin \left( {\frac{\pi }{3} - 3x} \right) = \sin \left( {x + \frac{\pi }{4}} \right)\] có nghiệm là: