IMG-LOGO

Câu hỏi:

23/07/2024 562

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA = a\sqrt 3 ,SB = 2a\). Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).

A.\[\frac{{5{a^2}\sqrt 3 }}{{18}}\]

Đáp án chính xác

B. \[\frac{{5{a^2}\sqrt 3 }}{6}\]

C. \[\frac{{4{a^2}\sqrt 3 }}{9}\]

D. \[\frac{{4{a^2}\sqrt 3 }}{3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA =  (ảnh 1)

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{(P)//(SAB)}\\{M \in AD,M \in (P)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(P) \cap (ABCD) = MN}\\{(P) \cap (SCD) = PQ}\end{array}} \right.\) và\[MN\,//\,PQ\,//\,AB\](1)

\(\left\{ {\begin{array}{*{20}{c}}{(P)//(SAB)}\\{M \in AD,M \in (P)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{(P) \cap (SAD) = MQ}\\{(P) \cap (SBC) = NP}\end{array}} \right.\) và\(\left\{ {\begin{array}{*{20}{c}}{MQ//SA}\\{NP//SB}\end{array}} \right.\)

Mà tam giác SAB vuông tại A nên \[SA \bot AB \Rightarrow MN \bot MQ\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra (P) cắt hình chóp theo thiết diện là hình thang vuông tại M và Q.

Mặt khác

\[MQ\,//\,SA \Rightarrow \frac{{MQ}}{{SA}} = \frac{{DM}}{{DA}} = \frac{{DQ}}{{DS}} \Rightarrow MQ = \frac{1}{3}SA\] và\[\frac{{DQ}}{{DS}} = \frac{1}{3}\]

\[PQ\,//\,CD \Rightarrow \frac{{PQ}}{{CD}} = \frac{{SQ}}{{SD}} \Rightarrow PQ = \frac{2}{3}AB\]  với\[AB = \sqrt {S{B^2} - S{A^2}} = a\]

Khi đó\[{S_{MNPQ}} = \frac{1}{2}MQ.\left( {PQ + MN} \right) \Leftrightarrow {S_{MNPQ}} = \frac{1}{2}\frac{{SA}}{3}.\left( {\frac{{2AB}}{3} + AB} \right)\]

\[ \Leftrightarrow {S_{MNPQ}} = \frac{{5{a^2}\sqrt 3 }}{{18}}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 1)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 2)

Xem đáp án » 06/09/2022 878

Câu 2:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 06/09/2022 359

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).

Xem đáp án » 06/09/2022 344

Câu 4:

Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng

Xem đáp án » 06/09/2022 276

Câu 5:

Cho hình chóp S.ABCD  có đáy ABCD  là hình thang đáy lớn AB . Gọi M  là một điểm trên cạnh CD;(α) là mặt phẳng qua M  và song song với SA  và BC. Thiết diện của mp(α) với hình chóp là:

Xem đáp án » 06/09/2022 260

Câu 6:

Cho hình hộp ABCD.A′B′C′D′, gọi M là trung điểm CD, (P) là mặt phẳng đi qua M và song song với B′D và CD′. Thiết diện của hình hộp cắt bởi mặt phẳng (P) là hình gì?

Xem đáp án » 06/09/2022 241

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD  cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng (α) đi qua M và song song với SA,BD  cắt SO,SB,AB tại N,P,Q. Tứ giác MNPQ  là hình gì?

Xem đáp án » 06/09/2022 222

Câu 8:

Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

Xem đáp án » 06/09/2022 220

Câu 9:

Cho hình chóp S.ABCD có đáy là hình vuông. Gọi O là giao điểm của AC và BD, M là trung điểm của DO, (α) là mặt phẳng đi qua M và song song với AC và SD. Thiết diện của hình chóp cắt bởi mặt phẳng (α) là hình gì.

Cho hình chóp S.ABCD có đáy là hình vuông. Gọi O là giao điểm của AC và BD, M là trung điểm của DO,  (ảnh 1)

Xem đáp án » 06/09/2022 212

Câu 10:

Cho tứ diện đều ABCD cạnh a . Gọi M  và P  lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \[MA = PC = x(0 < x < \frac{a}{2})\] . Mặt phẳng (α) đi qua MP  song song với CD cắt tứ diện theo một thiết diện là hình gì?

Xem đáp án » 06/09/2022 195

Câu 11:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=\(3a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 06/09/2022 194

Câu 12:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, các cạnh bên bằng \(a\sqrt 2 \) Gọi M là trung điểm của SD. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (ABM).

Xem đáp án » 06/09/2022 190

Câu 13:

Cho hình chóp S.ABCD  có đáy ABCD  là hình bình hành. Gọi d  là giao tuyến của hai mặt phẳng (SAD)  và (SBC) . Khẳng định nào sau đây là đúng?

Xem đáp án » 06/09/2022 187

Câu 14:

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]

Xem đáp án » 06/09/2022 184

Câu 15:

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB  và CD. Gọi I,J  lần lượt là trung điểm của các cạnh AD  và BC  và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)

Xem đáp án » 06/09/2022 178

Câu hỏi mới nhất

Xem thêm »
Xem thêm »