Qua phép chiếu song song, tính chất nào của hai đường thẳng không được bảo toàn ?
A.Chéo nhau
B.đồng qui
C.Song song
D.thẳng hàng
Qua phép chiếu song song, tính chất chéo nhau không được bảo toàn.
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A′, B′, C′, D′ sao cho \[{\rm{A}}A' = 3,BB' = 5,CC' = 4\]. Tính DD′.
Cho điểm M′ là hình chiếu của \[M \notin (\alpha )\;\] trên mặt phẳng (α) qua phép chiếu song song theo phương chiếu \[l \bot (\alpha ).\] Kết luận không đúng là:
Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?
Cho lăng trụ tam giác ABC.A′B′C′, gọi M,N lần lượt là hai điểm bất kỳ phân biệt nằm trên các cạnh AB′,A′B. Hình chiếu của chúng qua phép chiếu song song theo phương CC′ trên mặt phẳng (A′B′C′) lần lượt là M′,N′. Chọn kết luận không đúng:
Hình chiếu của một đường thẳng qua phép chiếu song song theo phương song song với đường thẳng đó trên mặt phẳng chiếu là:
Cho hình hộp ABCD.A′B′C′D′. Hình chiếu của A′B qua phép chiếu song song theo phương CB′ trên mặt phẳng (ABD) là:
Cho tam giác ABC ở trong mp(α) và phương l. Biết hình chiếu (theo phương l) của tam giác ABC lên mp(P) không song song (α) là một đoạn thẳng nằm trên giao tuyến. Khẳng định nào sau đây đúng ?
Cho điểm \[M \in (\alpha )\;\] và phương l không song song với (α). Hình chiếu của M lên (α) qua phép chiếu song song theo phương l là:
Cho hình hộp ABCD.A′B′C′D′. Gọi M là điểm trên cạnh AC sao cho AC=3MC. Lấy N trên cạnh C′D sao cho C′N=xC′D. Với giá trị nào của xx thì MN//BD′.
Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SD, N là trọng tâm tam giác SAB. Đường thẳng MN cắt mặt phẳng (SBC) tại điểm I. Tính tỷ số \(\frac{{IN}}{{IM}}\)
Cho hình hộp ABCD.A′B′C′D′. Gọi các điểm M,N tương ứng trên các đoạn AC′,B′D′ sao cho MN song song với BA′. Tỉ số\(\frac{{MA}}{{MC'}}\) là:
Cho hình hộp ABCD.A′B′C′D′. Gọi M,N lần lượt là trung điểm của CD và CC′. Kẻ đường thẳng Δ đi qua M đồng thời cắt AN và A′BA′B tại I,J. Hãy tính tỉ số \(\frac{{IM}}{{{\rm{IJ}}}}\).