Cho hình chóp S.ABCD có ABCD là hình chữ nhật, M là trung điểm của AB, tam giác SMC vuông tại tạo với đáy góc 600. Thể tích của khối chóp S.ABCD là:
A.
B.
C.
D.
Trong (SMC) kẻ ta có:
⇒IM là hình chiếu của SM lên (ABCD).
Áp dụng định lí Pytago trong tam giác BMC vuông tại B :
Xét tam giác SMC vuông tại S có
Xét tam giác SMI vuông tại I có
Vậy thể tích khối chóp là
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng lần phần còn lại. Tính tỉ số ?
Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB,SD lần lượt tại M và N. Thể tích lớn nhất của khối đa diện ABCDNEM bằng:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích khối chóp S.ABC?
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn và . Thể tích khối chóp S.BCD là:
Cho hình chóp tứ giác đều S.ABCD có chiều cao h, góc ở đỉnh của mặt bên bằng 600. Thể tích hình chóp là:
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a. Khoảng cách giữa hai đường thẳng SA và CD bằng . Thể tích khối chóp S.ABCD là:
Cho khối chóp tam giác S.ABC, trên các cạnh SA,SB,SC lần lượt lấy các điểm A′,B′,C′. Khi đó:
Cho hình chóp đều S.ABCD có diện tích đáy là , diện tích một mặt bên là . Thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD song song với BC, . Gọi E, F là hai điểm lần lượt nằm trên các cạnh AB và AD sao cho (E,F không trùng với A), Tổng giá trị lớn nhất và giá trị nhỏ nhất của tỉ số thể tích hai khối chóp S.BCDFE và S.ABCD là:
Cho khối lăng trụ tam giác đều có tất cả các cạnh bằng a. Gọi M là trung điểm của . Thể tích khối chóp là:
Cho khối chóp có thể tích V, diện tích đáy là S và chiều cao h. Chọn công thức đúng:
Cho hình chóp S.ABC, đáy là tam giác ABC có , , hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc α thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng , trong đó là số nguyên tố. Tổng a+b bằng:
Cho tứ diện đều ABCD có cạnh bằng 8. Ở bốn đỉnh tứ diện, nguời ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x, biết khối đa diện tạo thành sau khi cắt có thể tích bằng thể tích tứ diện ABCD. Giá trị của x là:
Cho khối chóp S.ABCD có thể tích bằng , đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Biết diện tích tam giác SAB bằng . Tính khoảng cách từ M tới mặt phẳng (SAB).