Cho hàm số y=f(x)) xác định và liên tục trên \(\mathbb{R}\), có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y=f(x) trên đoạn \[\left[ { - 2;2} \right]\]
A.m=−5,M=−1.
B.m=−1,M=0.
C.m=−2,M=2.
D.m=−5,M=0.
Dựa vào đồ thị hàm số ta có:\(\left\{ {\begin{array}{*{20}{c}}{m = \mathop {min}\limits_{[ - 2;2]} f(x) = - 5}\\{M = \mathop {max}\limits_{[ - 2;2]} f(x) = - 1}\end{array}} \right.\)
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Người ta cần chế tạo các món quà lưu niệm bằng đồng có dạng khối chóp tứ giác đều, được mạ vàng bốn mặt bên và có thể tích bằng 16cm3. Diện tích mạ vàng nhỏ nhất của khối chóp bằng bao nhiêu cm2? (Kết quả làm tròn đến hàng đơn vị.)
Cho hàm số \[y = {x^3} - 3m{x^2} + 6\], giá trị nhỏ nhất của hàm số trên \[\left[ {0;3} \right]\;\]bằng 2 khi:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sinx trên đoạn \[[ - \frac{\pi }{2}; - \frac{\pi }{3}]\] lần lượt là
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = f(1 - 2cosx)\] trên \[\left[ {0;\frac{{3\pi }}{2}} \right].\]Giá trị của M+m bằng
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) có đồ thị \[y = f\prime (x)\;\] như hình vẽ. Đặt \[g(x) = 2f(x) - {x^2}\]. Khi đó giá trị lớn nhất của hàm số g(x) trên đoạn \[\left[ { - 2;4} \right]\;\]là:
Cho hàm số f(x) xác định và liên tục trên R, có \[\mathop {\lim }\limits_{x \to + \infty } = + \infty ;\mathop {\lim }\limits_{x \to - \infty } = - \infty \] , khi đó:
Giá trị nhỏ nhất của hàm số \[y = 2x + \cos x\] trên đoạn \[\left[ {0;1} \right]\;\]là :
Cho hàm số y=f(x) có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
Cho biết GTLN của hàm số f(x) trên \[\left[ {1;3} \right]\;\]là M=−2. Chọn khẳng định đúng:
Cho hàm số f(x) xác định trên \[\left[ {0;2} \right]\;\]và có GTNN trên đoạn đó bằng 5. Chọn kết luận đúng:
Cho hàm số \[y = x + \frac{1}{x}.\] Giá trị nhỏ nhất của hàm số trên khoảng \[\left( {0; + \infty } \right)\;\]là:
Gọi giá trị lớn nhất và nhỏ nhất của hàm số \[y = {x^4} + 2{x^2} - 1\;\] trên đoạn \[\left[ { - 1;2} \right]\;\]lần lượt là M và m. Khi đó giá trị của M.m là:
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) và có đồ thị như hình dưới. Gọi a,A lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của f(x+1) trên đoạn \[\left[ { - 1;0} \right].\;\]Giá trị a+A bằng:
Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích V=6m3 dạng hình hộp chữ nhật với chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Biết rằng chi phí cho 1m2 bê tông cốt thép là 1.000.000d. Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn và các chữ số viết liền)?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ, chọn kết luận đúng: