Đơn giản biểu thức \[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\] ta được:
A.A = a
B.A = −a
C. \[A = \frac{1}{a}\]
D. \[A = {a^{2\sqrt 2 - 1}}\]
\[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}.{\left( {{a^{ - 1}}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}.{a^{ - \sqrt 2 + 1}} = {a^{\sqrt 2 - \sqrt 2 + 1}} = a\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
Giá trị \[P = \frac{{\sqrt[5]{4}.\sqrt[4]{{64}}.{{(\sqrt[3]{{\sqrt 2 }})}^4}}}{{\sqrt[3]{{\sqrt[3]{{32}}}}}}\] là:
Với giá trị nào của a thì đẳng thức \[\,\,\,\,\,\sqrt {a.\sqrt[3]{{a.\sqrt[4]{a}}}} = \sqrt[{24}]{{{2^5}}}.\frac{1}{{\sqrt {{2^{ - 1}}} }}\]đúng?
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:
Giá trị biểu thức \[P = \frac{{{{125}^6}.\left( { - {{16}^3}} \right)2.\left( { - {2^3}} \right)}}{{{{25}^3}.{{\left( { - {5^2}} \right)}^4}}}\] là:
Tính giá trị của biểu thức \[A = \sqrt {{{\left( {{a^e} + {b^e}} \right)}^2} - {{\left( {{4^{\frac{1}{e}}}ab} \right)}^e}} \] khi a = e; b = 2e