Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

21/07/2024 169

Họ nguyên hàm của hàm số \[y = \frac{{2x + 3}}{{2{x^2} - x - 1}}\] là:

A.\[\frac{2}{3}\ln \left| {2x + 1} \right| + \frac{5}{3}\ln \left| {x - 1} \right| + C\]

B. \[ - \frac{2}{3}\ln \left| {2x + 1} \right| + \frac{5}{3}\ln \left| {x - 1} \right| + C\]

Đáp án chính xác

C. \[\frac{2}{3}\ln \left| {2x + 1} \right| - \frac{5}{3}\ln \left| {x - 1} \right| + C\]

D. \[ - \frac{1}{3}\ln \left| {2x + 1} \right| + \frac{5}{3}\ln \left| {x - 1} \right| + C\]Trả lời:

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[\frac{{2x + 3}}{{2{x^2} - x - 1}} = \frac{{2x + 3}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\]

Do đó, ta cần biến đổi\[\frac{{2x + 3}}{{2{x^2} - x - 1}} = \frac{a}{{2x + 1}} + \frac{b}{{x - 1}}\] để tính được nguyên hàm.

Ta có:

\[\begin{array}{*{20}{l}}{\frac{a}{{2x + 1}} + \frac{b}{{x - 1}} = \frac{{a\left( {x - 1} \right) + b\left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}}\\{ = \frac{{ax - a + 2bx + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}} = \frac{{\left( {a + 2b} \right)x - a + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}}\end{array}\]

\( \Rightarrow \frac{{2x + 3}}{{2{x^2} - x - 1}} = \frac{{(a + 2b)x - a + b}}{{(2x + 1)(x - 1)}}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a + 2b = 2}\\{ - a + b = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - \frac{4}{3}}\\{b = \frac{5}{3}}\end{array}} \right.\)

 Do đó:

\[\smallint \frac{{2x + 3}}{{2{x^2} - x - 1}}dx\; = \smallint \left[ { - \frac{4}{3}.\frac{1}{{\left( {2x + 1} \right)}} + \frac{5}{3}.\frac{1}{{\left( {x - 1} \right)}}} \right]dx\;\]

\[ = \; - \frac{4}{3}\smallint \frac{1}{{\left( {2x + 1} \right)}}dx\; + \frac{5}{3}\smallint \frac{1}{{\left( {x - 1} \right)}}dx\]

\[ = \; - \frac{4}{3}.\frac{1}{2}\ln \left| {2x + 1} \right| + \frac{5}{3}\ln \left| {x - 1} \right| + C = \; - \frac{2}{3}\ln \left| {2x + 1} \right| + \frac{5}{3}\ln \left| {x - 1} \right| + C\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm họ nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2} - 2x + 1}}{{x - 2}}\]

Xem đáp án » 07/09/2022 230

Câu 2:

Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 199

Câu 3:

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: f\[\left( 0 \right) = 2\sqrt 2 ,\;f(x) > 0,\forall x \in \mathbb{R}\;\] và \[f(x).f\prime (x) = (2x + 1)\sqrt {1 + {f^2}(x)} ,\forall x \in \mathbb{R}\]. Khi đó giá trị f(1) bằng

Xem đáp án » 07/09/2022 194

Câu 4:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {e^x} + 2\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 07/09/2022 192

Câu 5:

Giả sử \[F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\] là một nguyên hàm của hàm số \[f\left( x \right) = {x^2}{e^x}\]. Tính tích P=abc.

Xem đáp án » 07/09/2022 183

Câu 6:

Hàm số nào không là nguyên hàm của hàm số \[y = 3{x^4}\]?

Xem đáp án » 07/09/2022 182

Câu 7:

Cho f(x) là đạo hàm của hàm số F(x). Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 181

Câu 8:

Mệnh đề nào dưới đây là sai?

Xem đáp án » 07/09/2022 177

Câu 9:

Một chiếc xe đua F1 đạt tới vận tốc lớn nhất là 360km/h. Đồ thị bên biểu thị vận tốc v của xe trong 5 giây đầu tiên kể từ lúc xuất phát. Đồ thị trong 2 giây đầu là một phần của một parabol định tại gốc tọa độ O, giây tiếp theo là đoạn thẳng và sau đúng ba giây thì xe đạt vận tốc lớn nhất. Biết rằng mỗi đơn vị trục hoành biểu thị 1 giây, mỗi đơn vị trực tung biểu thị 10 m/s và trong 5 giây đầu xe chuyển động theo đường thẳng. Hỏi trong 5 giây đó xe đã đi được quãng đường là bao nhiêu?

Xem đáp án » 07/09/2022 175

Câu 10:

Cho hàm số \[f\left( x \right) = {e^{ - 2018x + 2017}}\]. Gọi F(x) là một nguyên hàm của f(x) mà \[F\left( 1 \right) = e\]. Chọn mệnh đề đúng:

Xem đáp án » 07/09/2022 173

Câu 11:

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu:

Xem đáp án » 07/09/2022 167

Câu 12:

Hàm số \[y = sinx\;\] là một nguyên hàm của hàm số nào trong các hàm số sau?

\[{\left( {\sin x} \right)^\prime } = \cos x \Rightarrow y = \sin x\] là một nguyên hàm của hàm số\[y = \cos x\]

Xem đáp án » 07/09/2022 167

Câu 13:

Một đám vi trùng tại ngày thứ tt có số lượng N(t), biết rằng \[N\prime (t) = \frac{{4000}}{{1 + 0,5t\;}}\] và lúc đầu đám vi trùng có 250000 con. Hỏi số lượng vi trùng tại ngày thứ 10 (lấy theo phần nguyên) là bao nhiêu?

Xem đáp án » 07/09/2022 165

Câu 14:

Hàm số nào sau đây không là nguyên hàm của hàm số \[f(x) = \frac{{x\left( {x + 2} \right)}}{{{{\left( {x + 1} \right)}^2}}}\]?

Xem đáp án » 07/09/2022 160

Câu 15:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {x^2} + 4\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 07/09/2022 160

Câu hỏi mới nhất

Xem thêm »
Xem thêm »