Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?
A.\[\frac{5}{3}\]
B. \[\frac{2}{3}\]
C. \[\frac{3}{2}\]
D. \[\frac{3}{5}\]
Giả sử\[SC \cap \left( {IMN} \right) = \left\{ P \right\} \Rightarrow \left( {IMN} \right) \cap \left( {SAC} \right) = IP\]
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{(IMN) \cap (SAC) = IP}\\{(IMN) \cap (ABCD) = MN}\\{(SAC) \cap (ABCD) = AC}\end{array}} \right. \Rightarrow IP\parallel MN\parallel AC\)
Trong (ABCD) gọi \[\left\{ E \right\} = MN \cap CD\]trong (SCD) gọi \[Q = NP \cap SD\]
Khi đó thiết diện của hình chóp cắt bởi (MNI) là ngũ giác IMNPQ.
Gọi\[SM \cap \left( {ABCD} \right) = E \Rightarrow \frac{{d\left( {M;\left( {ABCD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}} = \frac{{ME}}{{SE}} = \frac{{11}}{{35}}\]theo bài ra ta có\[\frac{{{V_2}}}{{{V_1}}} = \frac{{{V_{M.ACD}}}}{{{V_{S.ABCD}}}} = \frac{{\frac{1}{3}.d\left( {M;\left( {ABCD} \right)} \right).{S_{ACD}}}}{{\frac{1}{3}.d\left( {S;\left( {ABCD} \right)} \right).{S_{ABCD}}}} = \frac{{11}}{{35}}.\frac{1}{2} = \frac{{11}}{{70}}\]
Ta có \[{V_1} = {V_{S.BMN}} + {V_{S.IMN}} + {V_{S.INP}} + {V_{S.IPQ}}\]
Đặt\[\frac{{SI}}{{SA}} = x\,\,\,(0 < x < 1)\]áp dụng định lí Ta-lét ta có\[\frac{{SI}}{{SA}} = \frac{{SP}}{{SC}} = x\]
- Xét khối chóp S.BMN và S.ABCD:
+ Có cùng chiều cao (cùng bằng khoảng cách từ SS đến (ABCD).
\[{S_{BMN}} = \frac{1}{4}{S_{ABC}} = \frac{1}{8}{S_{ABC}}\](do tam giác BMNBMN và tam giác BACBAC đồng dạng theo tỉ số\[DH \bot \left( {ABC} \right)\])
Do đó\[{V_{S.BMN}} = \frac{1}{8}{V_{S.ABCD}} = \frac{1}{8}V\]
- Xét khối chóp S.IMN và S.AMN:
\[\frac{{{V_{S.IMN}}}}{{{V_{S.AMN}}}} = \frac{{SI}}{{SA}} = x \Rightarrow {V_{S.IMN}} = x.{V_{S.AMN}}\]
Ta có\[{S_{AMN}} = {S_{BMN}} = \frac{1}{8}{S_{ABCD}} \Rightarrow {V_{S.AMN}} = \frac{1}{8}V \Rightarrow {V_{S.IMN}} = \frac{x}{8}V\]
- Xét khối chóp S.INP và S.ANC:
\[\frac{{{V_{S.INP}}}}{{{V_{S.ANC}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}} = {x^2} \Rightarrow {V_{S.IMN}} = {x^2}.{V_{S.ANC}}\]
Ta có\[{S_{ANC}} = \frac{1}{2}{S_{ABC}} = \frac{1}{4}{S_{ABCD}} \Rightarrow {V_{S.ANC}} = \frac{1}{4}V \Rightarrow {V_{S.IMN}} = \frac{{{x^2}}}{4}V\]
- Xét khối chóp S.IPQ và S.ACD:\[\frac{{{V_{S.IPQ}}}}{{{V_{S.ACD}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}}.\frac{{SQ}}{{SD}}\]
Ta có AMEC là hình bình hành nên\[EC = AM = \frac{1}{2}CD \Rightarrow \frac{{EC}}{{ED}} = \frac{1}{3}\]
Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến EPQ ta có:
\[\frac{{PS}}{{PC}}.\frac{{EC}}{{ED}}.\frac{{QD}}{{QS}} = 1 \Rightarrow \frac{x}{{1 - x}}.\frac{1}{3}.\frac{{QD}}{{QS}} = 1\]
\[\begin{array}{*{20}{l}}{ \Rightarrow \frac{{QD}}{{QS}} = \frac{{3\left( {1 - x} \right)}}{x} \Rightarrow \frac{{SQ}}{{QD}} = \frac{x}{{3\left( {1 - x} \right)}}}\\{ \Rightarrow \frac{{SQ}}{{SQ + QD}} = \frac{x}{{x + 3\left( {1 - x} \right)}}}\\{ \Rightarrow \frac{{SQ}}{{SD}} = \frac{x}{{3 - 2x}}}\end{array}\]
Suy ra\[\frac{{{V_{S.IPQ}}}}{{{V_{S.ACD}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}}.\frac{{SQ}}{{SD}} = {x^2}.\frac{x}{{3 - 2x}} = \frac{{{x^3}}}{{3 - 2x}}\]
\[ \Rightarrow {V_{S.IPQ}} = \frac{{{x^3}}}{{3 - 2x}}{V_{S.ACD}}\]
Mà\[{S_{ACD}} = \frac{1}{2}{S_{ABCD}} \Rightarrow {V_{S.ACD}} = \frac{1}{2}V \Rightarrow {V_{S.IPQ}} = \frac{{{x^3}}}{{2\left( {3 - 2x} \right)}}V\]
Khi đó ta có:
\[{V_1} = {V_{S.BMN}} + {V_{S.IMN}} + {V_{S.INP}} + {V_{S.IPQ}}\]
\[ \Rightarrow {V_1} = \frac{1}{8}V + \frac{x}{8}V + \frac{{{x^2}}}{4}V + \frac{{{x^3}}}{{2(3 - 2x)}}V\]
\[\begin{array}{l} \Rightarrow {V_1} = \left( {\frac{1}{8} + \frac{x}{8} + \frac{{{x^2}}}{4} + \frac{{{x^3}}}{{2(3 - 2x)}}} \right)V = \frac{7}{{32}}V\\ \Rightarrow \frac{1}{8} + \frac{x}{8} + \frac{{{x^2}}}{4} + \frac{{{x^3}}}{{2(3 - 2x)}} = \frac{7}{{32}}\\ \Leftrightarrow \frac{{1 + x + 2x2}}{4} + \frac{{{x^3}}}{{3 - 2x}} = \frac{7}{{16}}\\ \Leftrightarrow (1 + x + 2{x^2}).(12 - 8x) + 16{x^3} = 7(3 - 2x)\\ \Leftrightarrow 12 + 12x + 24{x^2} - 8x - 8{x^2} - 16{x^3} + 16{x^3} = 21 - 14x\\ \Leftrightarrow 16{x^2} + 18x - 9 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{3}{8}\left( {tm} \right)}\\{x = - \frac{3}{2}\left( {ktm} \right)}\end{array}} \right.\end{array}\]
\[ \Rightarrow \frac{{SI}}{{SA}} = \frac{3}{8} \Rightarrow \frac{{IS}}{{IA}} = \frac{3}{5} \Rightarrow \frac{{IA}}{{IS}} = \frac{5}{3}\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABC, đáy là tam giác ABC có \[AB = BC\sqrt 5 ,\;AC = 2BC\sqrt 2 \], hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc α thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng \(\frac{{\sqrt a }}{b}\), trong đó \[a,b \in {\mathbb{N}^*},\;\]a là số nguyên tố. Tổng a+b bằng:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích khối chóp S.ABC?
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn \[SA \bot \left( {ABCD} \right)\;\] và \[AB = 2AD = 2CD = 2a = \sqrt 2 SA\]. Thể tích khối chóp S.BCD là:
Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau, AB=6a,AC=7a,AD=4a. Gọi M,N,P lần lượt là trung điểm của các cạnh BC,CD,DB. Thể tích V của tứ diện AMNP là:
Khối chóp có đáy là hình bình hành, một cạnh đáy bằng a và các cạnh bên đều bằng \(a\sqrt 2 \). Thể tích của khối chóp có giá trị lớn nhất là:
Phép vị tự tỉ \[k > 0\;\]biến khối chóp có thể tích V thành khối chóp có thể tích V′. Khi đó:
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại A,AB=a,AC=\(a\sqrt 3 \). Tam giác SBC đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và có thể tích \[V = \frac{{{a^3}\sqrt 3 }}{6}\]. Tìm số r>0 sao cho tồn tại điểm J nằm trong khối chóp mà khoảng cách từ J đến các mặt bên và mặt đáy đều bằng r?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt đáy nằm trong hình vuông ABCD. Biết rằng SA và SC tạo với đáy các góc bằng nhau, góc giữa SB và đáy bằng 450, góc giữa SD và đáy bằng α với \[tan\alpha = \frac{1}{3}\]. Tính thể tích khối chóp đã cho.
Cho hình chóp S.ABCD có \[SA \bot (ABCD)\]. Biết \[AC = a\sqrt 2 \], cạnh SC tạo với đáy một góc 600 và diện tích tứ giác ABCD là \[\frac{{3{a^2}}}{2}\]. Gọi H là hình chiếu của A trên cạnh SC. Tính thể tích khối chóp H.ABCD.
Cho tứ diện ABCD có G là điểm thỏa mãn \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \]. Mặt phẳng thay đổi chứa BG và cắt AC,AD lần lượt tại M và N. Giá trị nhỏ nhất của tỉ số \[\frac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\] là
Thể tích khối bát diện đều cạnh a bằng:
Thể tích khối bát diện đều\[V = 2{V_{S.ABCD}}\]
Gọi\[O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\]
Vì ABCD là hình vuông nên \[AC = BD = a\sqrt 2 \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\]
\[SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OA \Rightarrow {\rm{\Delta }}SOA\]vuông tại O
\[ \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\]\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\]
\[ \Rightarrow V = 2\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{3}\]
Cho khối chóp có thể tích V, diện tích đáy là S và chiều cao h. Chọn công thức đúng:
Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a,SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:
Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy góc 600. Thể tích của khối chóp đó là: