Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 123

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = t}\\{z = t}\end{array}} \right.\)và \(d':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 3 - t'}\\{z = 0}\end{array}} \right.\). Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là: 

A.\[{(x - 2)^2} + {y^2} + {z^2} = 4\]

B. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 2\]

C. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]

Đáp án chính xác

D. \[{(x + 2)^2} + {(y + 1)^2} + {z^2} = 4\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lấy\[{\rm{A}} \in {\rm{d}} \Rightarrow {\rm{A}}\left( {2a;a;4} \right)\] và\[B \in d' \Rightarrow B\left( {b;3 - b;0} \right)\].

Ta có:\[\overrightarrow {AB} = \left( {b - 2a;3 - a - b; - 4} \right)\]

AB là đoạn vuông góc chung của hai đường thẳng d và d′ khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {{u_d}} = 0}\\{\overrightarrow {AB} .\overrightarrow {{u_{d'}}} = 0}\end{array}} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2.(b - 2a) + 1.(3 - a - b) + 0.( - 4) = 0}\\{1.(b - 2a) - 1.(3 - a - b) + 0.( - 4) = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5a + b + 3 = 0}\\{ - a + 2b - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\end{array}\)

Suy ra \[{\rm{A}}\left( {2;1;4} \right);B\left( {2;1;0} \right)\] và\[\overrightarrow {AB} = \left( {0;0; - 4} \right)\]

Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′

Có tâm I là trung điểm của AB và bán kính\[R = \frac{{AB}}{2}\]

Ta có I(2;1;2) và \[R = \frac{{AB}}{2} = \frac{4}{2} = 2\]

 Vậy ta có\[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.

Xem đáp án » 07/09/2022 345

Câu 2:

Trong không gian với hệ tọa độ  Oxyz,  cho mặt cầu (S) có phương trình

\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.

Xem đáp án » 07/09/2022 209

Câu 3:

Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình  mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].

Xem đáp án » 07/09/2022 207

Câu 4:

Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:

Xem đáp án » 07/09/2022 198

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;−2;3) và đường thẳng d có phương trình \[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]. Tính đường kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d.

Xem đáp án » 07/09/2022 184

Câu 6:

Trong không gian với hệ tọa độ Oxyz, phương trình  mặt cầu (S) có tâm I(2;0;1)  và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] là:

Xem đáp án » 07/09/2022 175

Câu 7:

Trong không gian Oxyz, cho điểm S(−2;1;−2) nằm trên mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} = 9\]. Từ điểm S kẻ ba dây cung SA,SB,SC với mặt cầu (S) có độ dài bằng nhau và đôi một tạo với nhau góc 600. Dây cung AB có độ dài bằng:

Xem đáp án » 07/09/2022 147

Câu 8:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ  có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:

Xem đáp án » 07/09/2022 146

Câu 9:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {(y + 1)^2} + {z^2} = {R^2}\]. Điều kiện của bán kính R để trục Ox tiếp xúc với (S) là: 

Xem đáp án » 07/09/2022 145

Câu 10:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\frac{x}{2} = \frac{{z - 3}}{1} = \frac{{y - 2}}{1}\;\] và hai mặt phẳng \[(P):x--2y + 2z = 0.(Q):x--2y + 3z - 5 = 0\]. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).

Xem đáp án » 07/09/2022 139

Câu 11:

Trong không gian với hệ tọa độ Oxyz, phương trình  mặt cầu (S) có tâm I(2;0;1)  và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\] là:

Xem đáp án » 07/09/2022 136

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  \[d:\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{1} = \frac{{z + 1}}{2}\], điểm A(2;−1;1). Gọi I là hình chiếu vuông góc của A lên d. Viết phương trình mặt cầu (C) có tâm I và đi qua A.

Xem đáp án » 07/09/2022 132

Câu 13:

Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng (P):2x−y−2z+1=0 và ba điểmA(1;−2;0), B(1;0;−1)  và C(0;0;−2). Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng (P) và tiếp xúc với ba đường thẳng AB,AC,BC?

Xem đáp án » 07/09/2022 129

Câu 14:

Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng \[(P):2x + 2y - z - 3 = 0\]và mặt cầu \[(S):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\]. Gọi \[\Delta \] là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \[\Delta \] là:

Xem đáp án » 07/09/2022 127

Câu 15:

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d:\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - t}\\{z = - t}\end{array}} \right.\) và 2 mặt phẳng (P)  và (Q) lần lượt có phương  trình \[x + 2y + 2z + 3 = 0;x + 2y + 2z + 7 = 0\]. Viết phương trình mặt cầu (S) có tâmI  thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P)  và (Q).

Xem đáp án » 07/09/2022 116

Câu hỏi mới nhất

Xem thêm »
Xem thêm »