Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 125

Cho mặt phẳng (P) có phương trình \[x + 3y - 2z + 1 = 0\;\] và mặt phẳng (Q) có phương trình \[x + y + 2z - 1 = 0\]. Trong các mặt phẳng tọa độ và mặt phẳng (Q) , xác định mặt phẳng tạo với (P) góc có số đo lớn nhất.

A.Mặt phẳng (Oxy) 

B.Mặt phẳng (Oyz)

C.Mặt phẳng (Oxz)       

D.Mặt phẳng (Q)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

(P) có \[\overrightarrow {{n_P}} = (1,3, - 2),\left( Q \right)\] có\[\overrightarrow {{n_Q}} = (1,1,2)\]  mặt phẳng (Oxy) có\[\overrightarrow {{n_1}} = (0,0,1)\] mặt phẳng (Oxz) có\[\overrightarrow {{n_2}} = (0,1,0)\]  mặt phẳng (Oyz) có \[\overrightarrow {{n_3}} = (1,0,0)\]

Có\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{|\overrightarrow {{n_P}} |.|\overrightarrow {{n_Q}} |}} = 0\](1)

Có\[\cos \left( {\left( P \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_1}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_3}} } \right|}}{{|\overrightarrow {{n_P}} |.|\overrightarrow {{n_1}} |}} = \frac{2}{{\sqrt {14} }}\](2)

Có \[\cos \left( {\left( P \right),\left( {Oxz} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_2}} } \right|}}{{|\overrightarrow {{n_P}} |.|\overrightarrow {{n_2}} |}} = \frac{3}{{\sqrt {14} }}\](3)

Có \[\cos \left( {\left( P \right),\left( {Oyz} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_3}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_3}} } \right|}}{{|\overrightarrow {{n_P}} |.|\overrightarrow {{n_3}} |}} = \frac{1}{{\sqrt {14} }}\](4)

Trong\[[0;{90^0}]\]  góc có cô sin càng nhỏ thì càng lớn.

Do đó góc giữa (P) và (Q) lớn nhất.

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x′Ox,y′Oy,z′Oz lần lượt tại các điểm A,B,C sao cho \[OA = OB = OC \ne 0\]?

Xem đáp án » 07/09/2022 234

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho  A(1,−3,2),B(1,0,1),C(2,3,0). Viết phương trình mặt phẳng (ABC) .

Xem đáp án » 07/09/2022 190

Câu 3:

Trong không gian với hệ tọa độ  Oxyz, viết phương trình mặt phẳng qua điểm M(2,−3,4)  và nhận \[\overrightarrow n = \left( { - 2,4,1} \right)\;\]làm vectơ pháp tuyến.

Xem đáp án » 07/09/2022 164

Câu 4:

Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1,3,−2) và song song với mặt phẳng \[(P):2x - y + 3z + 4 = 0\]  là:

Xem đáp án » 07/09/2022 157

Câu 5:

Viết phương trình mặt phẳng (P)  đi qua điểm M(1;0;−2) và vuông góc với hai mặt phẳng (Q),(R)  cho trước với \[\left( Q \right):x + 2y - 3z + 1 = 0\;\]và \[\left( R \right):2x - 3y + z + 1 = 0\;\].

Xem đáp án » 07/09/2022 142

Câu 6:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - y + 3 = 0\]. Vec-tơ nào sau đây không là vecto pháp tuyến của mặt phẳng (P) .

Xem đáp án » 07/09/2022 138

Câu 7:

Cho mặt phẳng \[\left( \alpha \right)\;\]đi qua hai điểm M(4;0;0) và N(0;0;3) sao cho mặt phẳng \[\left( \alpha \right)\;\]tạo với mặt phẳng (Oyz) một góc bằng 600.  Tính khoảng cách từ điểm gốc tọa độ đến mặt phẳng \[\left( \alpha \right)\]

Xem đáp án » 07/09/2022 137

Câu 8:

Phương trình mặt phẳng (P) đi qua điểm M(3;4;1) và giao tuyến của hai mặt phẳng \[(Q):19x - 6y - 4z + 27 = 0\;\]và \[(R):42x - 8y + 3z + 11 = 0\;\]là:

Xem đáp án » 07/09/2022 132

Câu 9:

Trong không gian Oxyz, cho ba điểm A(1,0,0),B(0,1,0) và C(0,0,1) . Phương trình mặt phẳng (P)  đi qua ba điểm A,B,C là:

Xem đáp án » 07/09/2022 129

Câu 10:

Viết phương trình mặt phẳng (P)  song song với mặt phẳng \[\left( Q \right):x + y - z - 2 = 0\;\]và cách (Q)  một khoảng là \(2\sqrt 3 \).

Xem đáp án » 07/09/2022 129

Câu 11:

Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng \[\left( P \right):ax + by + cz - 27 = 0\;\]qua hai điểm A(3,2,1),B(−3,5,2)  và vuông góc với mặt phẳng \[\left( Q \right):3x + y + z + 4 = 0\;\]. Tính tổng \[S = a + b + c.\]

Xem đáp án » 07/09/2022 128

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4,−1,2), B(2,−3,−2). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.

Xem đáp án » 07/09/2022 127

Câu 13:

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \[\left( P \right):mx + y - 2z - 2 = 0\;\]và \[\left( Q \right):x - 3y + mz + 5 = 0\]. Tìm tất cả các giá trị thực của m để hai mặt phẳng đã cho vuông góc với nhau.

Xem đáp án » 07/09/2022 125

Câu 14:

Cho điểm A(1,2,−1) và điểm B(2,−1,3). Kí hiệu (S) là quỹ tích các điểm M(x,y,z) sao cho\[M{A^2} - M{B^2} = 2\]. Tìm khẳng định đúng.

Xem đáp án » 07/09/2022 124

Câu 15:

Với mỗi giá trị của tham số m, xét mặt phẳng (Pm)  xác định bởi phương trình \[mx + m\left( {m + 1} \right)y + {\left( {m - 1} \right)^2}z - 1 = 0\]. Tìm tọa độ của điểm thuộc mọi mặt phẳng (Pm).

Xem đáp án » 07/09/2022 123

Câu hỏi mới nhất

Xem thêm »
Xem thêm »