Số nghiệm của phương trình |x + 1| - |x + 2| = x + 3 là
A. 1
B. 2
C. 3
D. 4
Ta có:
+) x + 1 = 0 x = -1
+) x + 2 = 0 x = -2
Ta có bảng:
x |
x < -2 |
-2 ≤ x ≤ -1 |
x > -1 |
x + 1 |
-x – 1 |
-x – 1 |
x + 1 |
x + 2 |
-x – 2 |
x + 2 |
x + 2 |
TH2: x < -2 ta có
|x + 1| - |x + 2| = x + 3
(-x – 1) – (-x – 2) = x + 3
1 = x + 3
x = -2 (KTM)
TH2: -2 ≤ x ≤ -1 ta có
|x + 1| - |x + 2| = x + 3
(-x – 1) – (x + 2) = x + 3
-x – 1 – x – 2 = x + 3
-2x -3 = x + 3
-3x = 6
x = -2 (TM)
TH3: x > -1 ta có
|x + 1| - |x + 2| = x + 3
(x + 1) – (x + 2) = x + 3
x + 1 – x – 2 = x + 3
-1 = x + 3
x = -4 (KTM)
Vậy phương trình có nghiệm duy nhất x = -2
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Số nguyên dương nhỏ nhất thỏa mãn bất phương trình |-x + 2| + 5 ≥ x – 2 là
Cho hai phương trình 4|2x – 1| + 3 = 15 (1) và |7x + 1| - |5x + 6| = 0 (2). Kết luận nào sau đây là sai
Số nguyên dương lớn nhất thỏa mãn bất phương trình |x – 6| + 5 ≥ x là
Cho hai phương trình 4|2x – 1| + 3 = 15 (1) và |7x + 1| - |5x + 6| = 0 (2). Kết luận nào sau đây là đúng
1. Nhắc lại về giá trị tuyệt đối
Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:
Ví dụ 1. Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:
a) A = | x – 5 | + x + 2 khi x ≥ 5.
b) B = 2x – 3 + | −3x | khi x > 0.
Lời giải:
a) Khi x ≥ 5 ta có x – 5 ≥ 0 nên | x – 5 | = x – 5.
Do đó A = | x – 5 | + x + 2 = x – 5 + x + 2 = 2x – 3.
b) Khi x > 0 ta có −3x < 0 nên | −3x | = −(− 3x) = 3x.
Do đó B = 2x – 3 + | − 3x | = 2x – 3 + 3x = 5x – 3.
2. Giải một số phương trình chứa dấu giá trị tuyệt đối
a) Phương pháp chung
Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.
Bước 2: Rút gọn hai vế của phương trình, giải phương trình.
Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.
Bước 4: Kết luận nghiệm.
b) Một số dạng cơ bản
Dạng | A | = B
Cách 1: hoặc
Cách 2: hoặc
Dạng | A | = | B | A = B hoặc A = − B.
Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối:
- Xét dấu các biểu thức chứa ẩn nằm trong dấu giá trị tuyệt đối.
- Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.
- Xét từng khoảng, khử các dấu giá trị tuyệt đối, rồi giải phương trình tương ứng trong trường hợp đó.
- Kết hợp các trường hợp đã xét, suy ra số nghiệm của phương trình đã cho.
Ví dụ 2. Giải phương trình | 2x | = 3x + 8.
Lời giải:
Ta có | 2x | = 3x + 8.
+ Với x ≥ 0 ta có | 2x | = 2x
Khi đó, phương trình trở thành 2x = 3x + 8
2x − 3x = 8
− x = 8
x = −8 (không thỏa mãn điều kiện x ≥ 0).
Do đó x = −8 không phải là một nghiệm của phương trình đã cho.
+ Với x < 0 ta có | 2x | = −2x
Khi đó, phương trình trở thành −2x = 3x + 8
−2x − 3x = 8
−5x = 8
(thỏa mãn điều kiện x < 0).
Do đó là một nghiệm của phương trình đã cho.
Vậy phương trình đã cho có tập nghiệm là S = .