IMG-LOGO

Câu hỏi:

15/07/2024 317

Cho tam giác ABC vuông tại A. Kẻ đường cao AH và phân giác trong AD của góc HAC. Phân giác trong góc ABC cắt AH, AD lần lượt tại M, N. Chứng minh rằng BND = 90°.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC vuông tại A. Kẻ đường cao AH và phân giác trong AD của góc HAC. Phân giác trong góc ABC cắt AH, AD lần lượt tại M, N. Chứng minh rằng BND = 90. (ảnh 1)

Ta có AMN = BMH = 90° - MBH, NDH = 90° - HAD mà MBH = 12ABC, HAD = 12HAC và ABC = HAC do cùng phụ với góc BCA, từ đó suy ra AMN = ADH hay tứ giác MHDN nội tiếp => MND = MHD = 90°.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O, đường kính AI. Gọi E là trung điểm của AB, K là trung điểm của OI, H là trung điểm của EB.

a) Chứng minh HK AB.

Xem đáp án » 20/09/2022 250

Câu 2:

Cho nửa đường tròn tâm I, đường kính MN. Kẻ tiếp tuyến Nx và lấy điểm P chính giữa của nửa đường tròn. Trên cung PN, lấy điểm Q (không trùng với P, N ). Các tia MP và MQ cắt tiếp tuyến Nx theo thứ tự tại S và T.

a) Chứng minh NS = MN.

Xem đáp án » 20/09/2022 127

Câu 3:

b) Chứng minh tứ giác AEKC nội tiếp được trong một đường tròn.

Xem đáp án » 20/09/2022 122

Câu 4:

b) Chứng minh tam giác MNT đồng dạng với tam giác NQT.

Xem đáp án » 20/09/2022 106

Câu 5:

c) Chứng minh tứ giác PQTS nội tiếp được trong một đường tròn.

Xem đáp án » 20/09/2022 106

Câu hỏi mới nhất

Xem thêm »
Xem thêm »